Journal of the European Optical Society - Rapid publications, Vol 10 (2015)
Exploring the impact of rotating rectangular plasmonic nano-hole arrays on the transmission spectra and its application as a plasmonic sensor
Abstract
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15023]
Citation Details
Cite this article
References
F. Fida, L. Varin, S. Badilescu, M. Kahrizi, and V. Truong, â€Gold nanoparticle ring and hole structures for sensing proteins and antigen-antibody interactions,†Plasmonics 4, 201–209 (2009).
X. Dang, J. Qi, M. T. Klug, P. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, â€Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells,†Nano Lett. 13, 637–642 (2013).
M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, and H. Ming, â€Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,†Plasmonics 6, 213–217 (2011).
I. Ashry, B. Zhang, S. V. Stoianov, C. Daengngam, J. R. Heflin, H. D. Robinson, and Y. Xu, â€Probing the photonic density of states using layer-by-layer self-assembly,†Opt. Lett. 37, 1835–1837 (2012).
Q. Wang, X. Wang, X. Li, and S. Wu, â€Transmission control property of a nano-optical system made by an antenna over a Bowtie aperture,†Plasmonics 8, 1141–1146 (2013).
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, â€Extraordinary optical transmission through sub-wavelength hole arrays,†Nature 391, 667–669 (1998).
H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, â€Surface plasmons enhance optical transmission through subwavelength holes,†Phys. Rev. B 58, 6779–6782 (1998).
S. Orbons, M. Haftel, C. Schlockermann, D. Freeman, M. Milicevic, T. Davis, B. Davies, D. Jamieson, and A. Roberts, â€Dual resonance mechanisms facilitating enhanced optical transmission in coaxial waveguide arrays,†Opt. Lett. 33, 821–823 (2008).
A. K. Azad, Y. Zhao, W. Zhang, and M. He, â€Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays,†Opt. Lett. 31, 2637–2639 (2006).
M. Kofke, D. Waldeck, Z. Fakhraai, S. Ip, and G. Walker, â€The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,†Appl. Phys. Lett. 94, 023104 (2009).
L. Lin, and A. Roberts, â€Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances,†Opt. Express 19, 2626–2633 (2011).
Y. Wang, Y. Qin, and Z. Zhang, â€Extraordinary optical transmission property of x-shaped plasmonic nanohole arrays,†Plasmonics 9, 203–207 (2014).
R. Biswas, S. Neginhal, C. Ding, I. Puscasu, and E. Johnson, â€Mechanisms underlying extraordinary transmission enhancement in subwavelength hole arrays,†J. Opt. Soc. Am. B 24, 2589–2596 (2007).
T. Vallius, J. Turunen, M. Mansuripur, and S. Honkanen, â€Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons,†J. Opt. Soc. Am. A 21, 456–463 (2004).
M. Irannejad, and B. Cui, â€Effects of refractive index variations on the optical transmittance spectral properties of the nano-hole arrays,†Plasmonics 8, 1245–1251 (2013).
Battula, S. Chen, Y. Lu, R. Kniz, and K. Reinhardt â€Tuning the extraordinary optical transmission through subwavelength hole array by applying a magnetic field,†Opt. Lett. 32, 2692–2694 (2007).
G. C. des Francs, D. Molenda, U. C. Fischer, and A. Naber, â€Enhanced light confinement in a triangular aperture: experimental evidence and numerical calculations,†Phys. Rev. B 72, 165111 (2005).
R. Wannemacher, â€Plasmon-supported transmission of light through nanometric holes in metallic thin films,†Opt. Commun. 195, 107–118 (2001).
R. Gordon, and A. Brolo, â€Increased cut-off wavelength for a subwavelength hole in a real metal,†Opt. Express 13, 1933–1938 (2005).