Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Principal component analysis in the spectral analysis of the dynamic laser speckle patterns

K. M. Ribeiro, R. A. Braga Jr., G. W. Horgan, D. D. Ferreira, T. Sáfadi

Abstract


Dynamic laser speckle is a phenomenon that interprets an optical patterns formed by illuminating a surface under changes with coherent light. Therefore, the dynamic change of the speckle patterns caused by biological material is known as biospeckle. Usually, these patterns of optical interference evolving in time are analyzed by graphical or numerical methods, and the analysis in frequency domain has also been an option, however involving large computational requirements which demands new approaches to filter the images in time. Principal component analysis (PCA) works with the statistical decorrelation of data and it can be used as a data filtering. In this context, the present work evaluated the PCA technique to filter in time the data from the biospeckle images aiming the reduction of time computer consuming and improving the robustness of the filtering. It was used 64 images of biospeckle in time observed in a maize seed. The images were arranged in a data matrix and statistically uncorrelated by PCA technique, and the reconstructed signals were analyzed using the routine graphical and numerical methods to analyze the biospeckle. Results showed the potential of the PCA tool in filtering the dynamic laser speckle data, with the definition of markers of principal components related to the biological phenomena and with the advantage of fast computational processing.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14009]

Full Text: PDF

Citation Details


Cite this article

References


H. J. Rabal, and R. A. Braga (ed.), Dynamic laser speckle and applications (CRC Press, New York, 2008).

I. Passoni, A. Dai Pra, H. Rabal, M. Trivi, and R. Arizaga, ”Dynamic speckle processing using wavelets based entropy,” Opt. Commun. 246, 219–228 (2005).

R. A. Braga, L. Dupuy, M. Pasqual, and R. R. Cardoso, ”Live biospeckle laser imaging of root tissue,” Eur. Biophys. J. 38, 679–686 (2009).

P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, et al. ”Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13904–13917 (2009).

A. Mavilio, M. Fernández, M. Trivi, H. Rabal, and R. Arizaga, ”Characterization of a paint drying process through granulometric analysis of speckle dynamic patterns,” Signal Process. 90, 1623–1630 (2010).

M. D. Z. Ansari, and A. K. Nirala, ”Biospeckle activity measurement of Indian fruits using the methods of cross-correlation and inertia moments,” Opt. – Int. J. Light Electron Opt. 124, 2180–2186 (2013).

R. R. Cardoso, A. G. Costa, C. M. B. Nobre, and R. A. Braga Jr., ”Frequency signature of water activity by biospeckle laser,” Opt. Commun. 284, 2131–2136 (2011).

G. H. Sendra, S. Murialdo, and I. Passoni, ”Dynamic laser speckle to detect motile bacterial response of Pseudomonas aeruginosa,” J. Phys. Conf. Ser. 90, 012064 (2007).

G. H. Sendra, R. Arizaga, H. Rabal, and M. Trivi, ”Decomposition of biospeckle images in temporary spectral bands,” Opt. Lett. 30, 1641–1643 (2005).

F. I. M. Argoud, F. M. de Azevedo, and J. Mariano Neto, ”Comparative study concerning to wavelet functions and its different applicabilities to pattern recognition in electroencephalogram,” Rev. Bras. Eng. Biomédica 20, 49–59 (2004).

H. Rabal, N. Cap, M. Trivi, and M. Guzmán, ”Q-statistics in dynamic speckle pattern analysis,” Opt. Lasers Eng. 50, 855–861 (2012).

B. J. Berne, and R. Pecora, Dynamic light scattering with applications to chemistry, biology and physics (John Wiley & Sons, New York, 1976).

A. F. da Silva, V. P. R. Minim, and M. M. Ribeiro, ”Sensory evaluation of differents comercial marks of the organic coffee (Coffea arabica l.),” Ciênc. agrotec. 29, 1.224–1.230 (2005).

L. Zhang, W. Dong, D. Zhang, and G. Shi, ”Two-stage image denoising by principal component analysis with local pixel grouping,” Pattern Recogn. 43, 1531–1549 (2010).

S. Jung, A. Sen, and J. S. Marron, ”Boundary behavior in high dimension, low sample size asymptotics of PCA,” J. Multivariate Anal. 109, 190–203 (2012).

T. O. Nielsen, R. B. West, S. C. Linn, O. Alter, M. A. Knowling, J. X. O’Connell, S. Zhu, et al., ”Molecular characterisation of soft tissue tumours: a gene expression stude,” The Lancet 359, 1301–1307 (2002).

M. Ringnér, ”What is principal component analysis?,” Nat. Biotechnol. 26, 303–304 (2008).

C. R. Souza Filho, and A. Dinniss, ”Periodic noise suppression techniques applied to remote sensing images,” Bol. IG-USP Sér. Cient. 28, 23–62 (1997).

G. Chen, and S. Qian, ”Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage,” IEEE Trans. Geosci. Remote. Sens. 49, 973–980 (2011).

H. Abdi, and L. J. Williams, ”Principal component analysis,” Wiley Interdiscip. Rev.: Comput. Statistics 2, 433–459 (2010).

P. Xanthopoulos, P. P. M. Pardalos, and T. B. Trafalis, Robust data mining (Springer, New York, 2013).

J. D. Hadfield, ”MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package,” J. Statistical Softw. 33, 1–22 (2010).

L. Batina, J. Hogenboom, and J. G. J. Van Woudenberg, ”Getting more from PCA: First results of using principal component analysis for extensive power analysis,” Lect. Notes Comput. Sci. 7178, 383–397 (2012).

H. Fujii, K. Nohira, Y. Yamamoto, H. Ikawa, and T. Ohura, ”Evaluation of blood flow by laser speckle image sensing. Part 1,” Appl. Opt. 26, 5321–5325 (1987).

R. Arizaga, N. L. Cap, H. Rabal, and M. Trivi, ”Display of the local activity using dynamical speckle patterns,” Opt. Eng. 41, 287–294 (2002).

L. P. Specht, S. C. Callai, O. A. Khatchatourian, and R. Kohler, ”Noise evaluation using the SPBI (Statistical Pass-By Index) for different pavements,” Rem: Rev. Esc. Minas 62, 439–445 (2009).

R. A. Braga, A. Souza, M. G. G. C. Vieira, E. V. R. Von Pinho, H. J. Rabal, and I. M. Dal Fabro, ”Biospeckle laser as a potential test of seed viability,” Ciênc. Agrotec. 25, 645–649 (2001).

S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, ”Noise in laser speckle correlation and imaging techniques,” Opt. Express 18, 14519–14534 (2010).

H. F. Kaiser, ”The application of eletronic computers to factor analysis,” Educ. Psychol. Meas. 20, 111–117 (1960).

P. R. Scalassara, C. S. Barin, and C. D. Maciel, ”Electrochemical noise minimization using digital signal processing,” Semina: Ciênc. Exact. Tecnol. 25, 135–144 (2004).