Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Invited Publication

Reduced symmetry and analogy to chirality in periodic dielectric media

I. H. Giden, M. Turduev, H. Kurt

Abstract


Much attention has been paid to photonic applications based on periodic media. Meanwhile, quasi-periodic and disordered media have extended the research domain and provided additional novelties for manipulating and controlling light propagation. This review article attempts to highlight the benefits of symmetry reduction in highly symmetric periodic photonic media, and applies the concept of chirality to all-dielectric materials arranged in special orders. Two-dimensional periodic structures known as photonic crystals (PCs) are highly symmetric in terms of structural patterns, due to the lattice types and shape of the elements occupying the PC unit-cell. We propose the idea of intentionally introducing reduced-symmetry, to search for anomalous optical characteristics so that these types of PCs can be used in the design of novel optical devices. Breaking either translational or rotational symmetries of PCs provides enhanced and additional optical characteristics such as creation of a complete photonic bandgap, wavelength demultiplexing, super-collimation, tilted self-collimation, and beam deflecting/routing properties. Utilizing these characteristics allows the design of several types of photonic devices such as polarization-independent waveguides, wavelength demultiplexers, beam deflectors, and routers. Moreover, reducing the symmetry in the PC unit-cell scale produces a novel feature in all-dielectric PCs that is known as chirality. On the basis of above considerations, it is expected that low-symmetric PCs can be considered as a potential structure in photonic device applications, due to the rich inherent optical properties, providing broadband operation, and being free of absorption losses.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14045i]

Full Text: PDF

Citation Details


Cite this article

References


L. Rayleigh, ”On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Phil. Mag. S. 5 24(147), 145–159 (1887).

A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, Oxford, 2007).

E. Yablonovitch, ”Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

S. John, ”Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, (Princeton University Press, New Jersey, 2008).

Y. Akahane, T. Asano, B-S. Song, and S. Noda, ”High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).

B. S. Song, S. Noda, T. Asano, and Y. Akahane, ”Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, ”Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Elect. 38, 915–918 (2002).

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, ”Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, ”Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).

H. Kurt, M. N. Erim, and N. Erim, ”Various photonic crystal biosensor configurations based on optical surface modes,” Sensor. Actuat. B-Chem. 165(1), 68–75 (2012).

T. F. Krauss, R. M. D. L. Rue, and S. Brand, ”Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383(6602), 699–702 (1996).

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and L. Kim, ”Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).

S. Noda, A. Chutinan, and M. Imada, ”Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 606–610 (2000).

H. Kurt, ”Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits,” IEEE Photonic. Tech. L. 20, 1682–1684 (2008).

A. E. Akosman, M. Mutlu, H. Kurt, and E. Ozbay, ”Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides,” Opt. Express 19, 24129–24138 (2011).

T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, ”Hypersonic Phononic Crystals,” Phys. Rev. Lett. 94, 115501 (2005).

A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, ”Guiding and bending of acoustic Waves in Highly Confined Phononic Crystal Waveguides,” Appl. Phys. Lett. 84(22), 4400–4402 (2004).

S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, ”Focusing of Sound in a 3D Phononic Crystal,” Phys. Rev. Lett. 93(2), 024301 (2004).

V. Romero-Garcia, R. Pico, A. Cebrecos, V. J. Sanchez-Morcillo, and K. Staliunas, ”Enhancement of sound in chirped sonic crystals,” Appl. Phys. Let. 102, 091906 (2013).

D. S. Wiersma, ”Disordered photonics,” Nat. Photonics 7, 188–196 (2013).

E. R. Martins, J.T. Li, Y. K. Liu, V. Depauw, Z. X. Chen, J. Y. Zhou, and T. F. Krauss, ”Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).

M. Segev, Y. Silberberg, and D. N. Christodoulides, ”Anderson localization of light,” Nat. Photonics 7, 197–204 (2013).

B. Redding, S. F. Liew, R. Sarma, and H. Cao, ”Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, ”Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, ”Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).

N. M. Lawandy, ”Disordered media: Coherent random lasing,” Nat. Phys. 6, 246–248 (2010).

V. Roppo, D. Dumay, J. Trull, C. Cojocaru, S. M. Saltiel, K. Staliunas, R. Vilaseca, et al., ”Planar second-harmonic generation with noncollinear pumps in disordered media,” Opt. Express 16, 14192–14199 (2008).

Z. V. Vardeny, A. Nahata, and A. Agrawal, ”Optics of photonic quasicrystals,” Nat. Photonics 7, 177–187 (2013).

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, ”Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740–743 (2000).

N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, ”Fabrication of twoand three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express 14, 10746–10752 (2006).

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, ”Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type Lattice,” Phys. Rev. Lett. 94, 183903 (2005).

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. M. De La Rue, and P. Millar, ”Two-dimensional Penrose-tiled photonic quasicrystals: diffraction of light and fractal density of modes,” J. Mod. Optic. 47(11), 1771–1778 (2000).

Y. A. Vlasov, M. I. Kaliteevski, and V. V. Nikolaev, ”Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B. 60, 1555–1562 (1999).

M. Werchner, M. Schafer, M. Kira, S. W. Koch, J. Sweet, J. D. Olitzky, J. Hendrickson, et al., ”One dimensional resonant Fibonacci quasicrystals: noncanonical linear and canonical nonlinear effects,” Opt. Express 17, 6813–6828 (2009).

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, ”Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).

Y. S. Chan, C. T. Chan, and Z. Y. Liu, ”Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998).

M. C. Rechtsman, H.-.C Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, ”Optimized Structures for Photonic Quasicrystals,” Phys. Rev. Lett. 101, 073902 (2008).

M. Florescu, S. Torquato, and P. J. Steinhardt, ”Complete band gaps in two-dimensional photonic quasicrystals,” Phys. Rev. B 80, 155112 (2009).

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, ”Experimental measurement of the photonic properties of icosahedral quasicrystals,” Nature 436, 993–996 (2005).

J. Hung Lin, W. L. Chang, H-Y. Lin, T-H. Chou, H-C. Kan, and C. C. Hsu, ”Enhancing light extraction efficiency of polymer lightemitting diodes with a 12-fold photonic quasi crystal,” Opt. Express 21, 22090–22097 (2013).

C. Kittle, Introduction to solid state physics (John Wiley & Sons, New York, 1996).

Q. Gong, and X. Hu, Photonic Crystals: Principle and Applications (Pan Stanford Publishing, Singapore, 2012).

Z-Y. Li, B-Y Gu, and G-Z Yang, ”Large absolute band gap in 2D anisotropic Photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).

C. M. Anderson, and K. P. Giapis, ”Larger two-dimensional Photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996).

X. Zhang, and Z-Q Zhang, ”Creating a gap without symmetry breaking in two-dimensional photonic crystals,” Phys. Rev. B 61, 9847–9850 (2000).

N. Susa, ”Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes,” J. Appl. Phys. 91, 3501–3510 (2002).

M. Agio, and L. C. Andreani, ”Complete photonic band gap in a two-dimensional chessboard lattice,” Phys. Rev. B 61, 15519–15522 (2000).

R. Wang, X-H. Wang, B-Y. Gu, and G-Z. Yang, ”Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys. 90, 4307–4313 (2001).

T. F. Khalkhali, B. Rezaei, and M. Kalafi, ”Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals,” Opt. Commun. 284(13), 3315–3322 (2011).

P. Shi, K. Huang, and Y-P. Li, ”Photonic crystal with complex unit cell for large complete band gap,” Opt. Commun. 285(13), 3128–3132 (2012).

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2005).

S. H. Moosavi Mehr, and S. Khorasani, ”Influence of asymmetry on the band structure of photonic crystals,” Proc. SPIE 7609, 76091G (2010).

P. G. Luan, Z. Ye, ”Two dimensional photonic crystals,” arXiv:condmat/ 0105428 (2001).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals (Princeton University Press, Princeton, 2008).

S. Johnson, and J. Joannopoulos, ”Block-iterative frequencydomain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).

D. E. Aspnes, ”Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).

Y. Kurosaka, S. Iwahashi, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, ”Band structure observation of 2D photonic crystal with various V-shaped air-hole arrangements,” IEICE Electron. Expr. 6, 966–971 (2009).

R. H. Petrucci, R. S. Harwood, and F. G. Herring, General Chemistry: Principles and Modern Applications (Pearson Prentice Hall, New Jersey, 2002).

E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds (Wiley, Chichester, 1994).

A. D. McNaught and A. Wilkinson, Compendium of Chemical Terminology (Blackwell Scientific Publications, Oxford 1997).

L. Pasteur, Researches on the molecular asymmetry of natural organic products (1848). English translation of French original, published by Alembic Club Reprints (Vol. 14, pp. 1–46) in 1905, facsimile reproduction by SPIE in a 1990 book.

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, Cambridge, 2004).

P. Yeh, ”Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979).

H.-S. Kitzerow, and C. Bahr (eds.), Chirality in Liquid Crystals (Springer, New York, 2001).

A. H. Gevorgyan, ”Optical properties of a stack of right- and lefthanded layers of a cholesteric liquid crystal,” Opt. Spectrosc. 113, 141–152 (2012).

J. B. Pendry, ”A chiral route to negative refraction,” Science 306, 1353–1355 (2004).

Z. Li and M. Mutlu, and E. Ozbay, ”Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).

M. Hentschel, M. Schoferling, T. Weiss, N. Liu, and H. Giessen, ”Three dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012).

M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, ”Threedimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).

M. Thiel, G. von Freymann, and M. Wegener, ”Layer-by-layer threedimensional chiral photonic crystal,” Opt. Lett. 32, 2547–2549 (2007).

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, ”Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).

E. Plum, J. Zhou, J. Dong, V. A. Fedotov,T. Koschny, C. M. Soukoulis, and N. I. Zheludev, ”Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).

S. Takahashi, A. Tandaechnurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, ”Giant optical rotation in a threedimensional semiconductor chiral photonic crystal,” Opt. Express 21, 29905–29913 (2013).

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, ”Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16, 7189–7196 (2008).

W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, ”Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials,” Appl. Phys. Lett. 86, 231905 (2005).

K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, ”Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett. 106, 057402 (2011).

X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, ”Twodimensional photonic crystals with anisotropic unit cells imprinted from poly(dimethylsiloxane) membranes under elastic deformation,” Appl. Phys. Lett. 93, 161911 (2008).

B. Rezaei and M. Kalafi, ”Engineering absolute band gap in anisotropic hexagonal photonic crystals,” Opt. Commun. 266, 159–163 (2006).

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, et al., ”Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).

I. H. Giden and H. Kurt, ”Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering,” Appl. Optics 51, 1287–1296 (2012).

K. M. Ho, C.T. Chan, and C.M. Soukoulis, ”Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152 (1990).

N. Erim, I. H. Giden, M. Turduev, and H. Kurt, ”Efficient mode-order conversion using a photonic crystal structure with low symmetry,” J. Opt. Soc. Am. B 30, 3086–3094 (2013).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, Massachusetts, 2005).

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, ”Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).

R. E. Hamam, M. Ibanescu, S.G. Johnson, J.D. Joannopoulos, and M. Soljaci´c, ”Broadband super-collimation in a hybrid photonic crystal structure,” Opt. Express 17, 8109–8118 (2009).

X. Yu and S. Fan, ”Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).

I. H. Giden, M. Turduev, and H. Kurt, ”Broadband super-collimation with low-symmetric photonic crystal,” Photonic. Nanostruct. 11, 132–138 (2013).

M. Turduev, I. H. Giden, and H. Kurt, ”Extraordinary wavelength dependence of self-collimation effect in photonic crystal with low structural symmetry,” Photonic. Nanostruct. 11, 241–252 (2013).

H. Kurt, M. Turduev, and I. H. Giden, ”Crescent shaped dielectric periodic structure for light manipulation,” Opt. Express 20, 7184–7194 (2012).

M. Turduev, I. H. Giden, and H. Kurt, ”Modified annular photonic crystals with enhanced dispersion relations: polarization insensitive self-collimation and nanophotonic wire waveguide designs,” J. Opt. Soc. Am. B 29, 1589–1598 (2012).