Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Investigation of a novel silicon-on-insulator Rib-Slot photonic sensor based on the vernier effect and operating at 3.8 µm

B. Troia, V. M. N. Passaro

Abstract


In this paper, we present the theoretical investigation of photonic sensors based on Vernier effect with two cascade-coupled ring resonators in silicon on insulator technology. The photonic chip utilizes rib and slot waveguides designed to operate at 3.8 µm mid infrared wavelength, where a number of harmful gases, chemical and biochemical analytes are spectroscopically accessible. A rigorous algorithmic procedure has been implemented for the design of such devices and novel technological solutions have been proposed according to very recent experimental results. The rib-slot sensor architecture can exhibit wavelength sensitivities as high as 20.6 µm/RIU and limits of detection for homogeneous sensing as low as 3.675 x 10^-4 RIU.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14005]

Full Text: PDF

Citation Details


Cite this article

References


L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, et al., ”Silicon photonic resonator sensors and devices,” Proc. of SPIE, 8236, 823620 (2012).

V. M. N. Passaro, B. Troia, M. La Notte, and F. De Leonardis, ”Photonic resonant microcavities for chemical and biochemical sensing,” RSC Adv. 3, 25–44 (2013).

N. A. Yebo, S. P. Sree, E. Levrau, C. Detavernier, Z. Hens, J. A. Martens, and R. Baets, ”Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator,” Opt. Express 20, 11855-11862 (2012).

J. Hodgkinson, and R. P. Tatam, ”Optical gas sensing: a review,” Meas. Sci. Technol. 24, 1–59 (2013).

M. Piliarik, H. Sipova, P. Kvasnicka, N. Galler, J. R. Krenn, and J. Homola, ”High-resolution biosensor based on localized surface plasmons,” Opt. Express 20, 672–680 (2012).

M. Lee, and P. M. Fauchet, ”Two-dimension silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530–4535 (2007).

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, et al., ”Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012).

R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, ”Seriescoupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18, 25151–25157 (2010).

R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. F. Jaeger, ”Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21, 9103–9112 (2013).

L. Jin, M. Li and J-J. He, ”Highly-sensitive silicon-on-insulator sensor based on two cascade micro-ring resonators with Vernier effect,” Opt. Commun. 284, 156–159 (2011).

T. Claes, W. Bogaerts and P. Bienstman, ”Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonator based on the Vernier-effect and introducing of a curve fitting method for an improved detection limit,” Opt. Express 18, 22747–22761 (2010).

D. Dai, ”Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17, 23817–23822 (2009).

J. Hu, and D. Dai, ”Cascaded-Ring Optical Sensor With Enhanced Sensitivity by Using Suspended Si-Nanowires,” IEEE Photon. Technol. Lett. 23, 842–844 (2011).

X. Jiang, J. Ye, J. Zou, M. Li, and J.-J. He, ”Cascaded siliconon- insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode,” Opt. Letters 38, 1349–1351 (2013).

V. M. N. Passaro, B. Troia, and F. De Leonardis, ”A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR,” Sens. Actuators B: Chemical 168, 402–420 (2012).

B. Troia, and V. M. N. Passaro, ”Photonic sensor based on the Vernier effect operating at 3.8 mm,” in Proceedings of the 5th EOS Topical Meeting on Optical Microsystems (OmS’13), (EOS, Capri, 2013).

G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, ”Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011).

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, et al., ”Silicon photonic devices and platforms for the mid-infrared,” Opt. Mat. Express 3, 1205–1214 (2013).

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, et al., ”Demonstration of Silicon-on-Insulator midinfrared spectrometer operating at 3.8mm,” Opt. Express 21, 11659–11669 (2013).

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, et al., ”Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mat. Express 3, 1523–1536 (2013).

R. A. Soref, S. J. Emelett, and W. R. Buchwald, ”Silicon waveguided components for the long-wave infrared region,” J. Opt. A: Pure Appl. Opt. 8, 840–848 (2006).

Comsol Multiphysics by COMSOL©, ver. 3.2, single license (2005).

F. Dell’Olio, and V. M. N. Passaro, ”Optical sensing by optimized silicon slot waveguide,” Opt. Express 15, 4977–4993 (2007).

V. M. N. Passaro, and M. La Notte, ”Optimizing SOI Slot Waveguide Fabrication Tolerances and Strip-Slot Coupling for Very Efficient Optical Sensing,” Sensors 12, 2436–2455 (2012).

OptiFDTD, Version 7.1 & OptiBPM, Version 9.0; Optiwave Systems Inc.: Nepan, ON, Canada, 2007.

V. M. N. Passaro, F. Dell’Olio, B. Timotijevic, G. Z. Mashanovich, and G. T. Reed, ”Polarization-Insensitive Directional Couplers Based on SOI Wire Waveguides,” The Open Optics Journal 2, 6–9 (2008).