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We propose a numerical approach to study optical speckle fields generated by various conditions of surface roughness and illumination,
without any a priori assumption concerning the properties of the scattered field. By overcoming the limitations imposed by the use of the
central limit theorem, we perform the study of the whole circular Gaussian transition undergone by the speckle field when varying the
surface roughness and the size of the laser illumination. We focus our attention on the speckle contrast, the degree of circularity and the
degree of asymmetry, including their radial dependence. [DOI: 10.2971/jeos.2008.08028]
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1 INTRODUCTION

Laser speckle [1] may be considered as the ultimate limiting
noise in optical imaging measurements with coherent light.
However, under certain conditions, it also carries information
about the characteristics of the illuminated scattering object.
Since the beginning of experimentations with lasers, a lot of
work has been achieved to understand speckle and to predict
its statistical properties, either for noise reduction, or for sur-
face roughness measurement. Goodman [2] has studied the
first and second-order statistics of fully and partially devel-
oped speckle. This study has been performed under the hy-
pothesis of a diameter of illumination broad enough to in-
clude a sufficient number of scattering contributions so that
the central limit theorem could be applied. Then, many inves-
tigations have been carried out to obtain the speckle statis-
tics in cases of fewer illuminated scattering cells giving rise
to non Gaussian speckle, but always with restricting hypoth-
esis. Especially, Pedersen [3] has studied the evolution of the
speckle contrast with a decreasing number of scattering cells
inside the illumination beam. The surface was described as a
set of independent and horizontal random facets and the re-
sults were limited to the specular direction. Moreover, Jake-
man and Pusey [4] have calculated theoretically the moments
of intensity of non-Gaussian speckle but only in the hypothe-
sis of a deep random phase screen.

When the surface roughness becomes lower than the wave-
length, the breaking of the property of circularity concerning
the distribution of the scattered field in the complex plane
gives rise to a different statistical regime that can be very use-
ful to characterize the surface. Such a scattered field has been
modelized by Ohtsubo and Asakura [5] using the sum of a
specular component and a diffuse component of zero mean.

They have especially inferred that, in the conical specular re-
gion around the optical axis, the circularity of the field was
lost. Moreover, a theoretical work from Uozumi and Asakura
[6] has presented the probability density functions of non-
circular speckle fields but with the assumption of a large num-
ber of scatterers illuminated. Theoretical works dealing with
non-Gaussian speckle and roughness lower than the wave-
length can be found but are generally limited to a roughness
lower than one third of the wavelength [7, 8].

Finally, to our knowledge, there are only few theoretical works
dealing with non-Gaussian speckle for roughness values in-
cluded in the range [λ/3, λ], in spite of the potential of this
domain to characterize surfaces properties, as will be shown
in this work. Among them, we can find the work of Fujii et
al. [9] that have first used computer simulations to deduce
speckle properties. They have calculated the intensity dis-
tribution and the contrast variation of the speckle field for
various symmetrical surface profiles taking into account the
number of correlation cells included in the point spread func-
tion of their optics. Later, the same team has completed this
work [10] by enlarging the previous study to both asymmet-
rical Gaussian random surfaces and Gaussian random sur-
faces combined with a sinusoidal variation. However, these
two previous studies were limited to surfaces modelized as
one-dimensional objects. Uozumi and Azakura, in a further
work [11], have then derived the probability density function
of intensity for speckles produced by weak diffusers with very
few illuminated correlation cells in the case of a 2D surface.
However, this surface was described by a discrete cell model
that assumed statistical independence between each dephas-
ing cell and did not take into account any correlation of the
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surface. At the same time, Fujii [12], assuming a Gaussian dis-
tribution of the surface heights distribution, has performed an
analytical study of the contrast for non-Gaussian speckle scat-
tered from a low surface roughness and more recently, Hansen
et al. [13] have used the ABCD matrices formalism to calculate
analytical functions of first-order statistics concerning such
partially developed speckle. However, these two latter works
needed an approximation concerning the correlation function
of the optical scattered field and have limited their results on
the optical axis.

Finally, the statistical characteristics of speckle fields in the cir-
cular and Gaussian transition, and the effect of their coupling
are still poorly described at this time. On a practical point of
view, such new information is expected to participate to the
improvement of absolute surface roughness and correlation
length measurements by speckle analysis [14]-[16]. Especially,
instead of characterizing the surface using a constant illumi-
nation area with various optical apertures as performed in
the latter reference for random surface samples with Gaussian
correlation, we provide here qualitative and quantitative re-
sults about some speckle statistics that give new insights con-
cerning a surface characterization method based on a vary-
ing illumination area of the sample and that doesn’t require
any detection optics. For this purpose, we propose here a nu-
merical approach to complete the missing data concerning
partially developed non-Gaussian speckle fields generated by
random rough surfaces. The model proposed here, subjected
to the only paraxial approximation, is able to provide speckle
statistics for a large range of surface roughness and illumi-
nation conditions, including the ones where the central limit
theorem can’t be applied. After a brief revue concerning the
properties of a circular Gaussian speckle field in Section 2, a
description of our approach is proposed in Section 3. In Sec-
tion 4, we first perform some calculation about the on axis
speckle contrast in a particular Gaussian transition in far field
in order to compare our results with previous theoretical and
experimental works. Finally, we propose in Section 5 the study
of the circular Gaussian transition of a speckle field through
the contrast, the degree of circularity and the degree of asym-
metry, including their radial dependence. We have chosen to
perform this study in near field in order to exhibit the proper-
ties of asymmetry of the complex field.

2 BRIEF REVIEW OF SOME SPECKLE
PROPERTIES

Let us consider the propagation in free space of a monochro-
matic wave completely polarized that is dephased by the scat-
tering on a rough material modeled by a deep phase screen. At
an observation point, the complex amplitude of the scattered
field Ẽ(x, y, z) can be interpreted as a sum of many indepen-
dent contributions. In the hypothesis that each contribution
has an amplitude and a phase independent of each other and
independent of the other contributions, and that the surface
roughness is considered to induce an uniformly distributed
dephasing of the incident field over [0, 2π], Goodman [2] has
shown that, in the case of a sufficient number of contributions,
Re{Ẽ} and Im{Ẽ} are two random variables that have zero
means, equal variances and that are uncorrelated. Further-

more, according to the central limit theorem, if the number of
contributions tends towards infinity, the real and imaginary
part of the field both approach a Gaussian distribution. Their
joint probability density function then follows asymptotically
the equation :

P(Re{Ẽ}, Im{Ẽ}) =
1

2πσ2 exp
[
−Re{Ẽ}2 + Im{Ẽ}2

2σ2

]
(1)

where σ is the standard deviation of this Gaussian distribu-
tion. Then, the field follows the statistics of a complex circular
Gaussian random variable and the contrast of such completely
developed speckle is :

C =
σI
〈I〉 = 1 (2)

where σI is the standard deviation of the intensity and 〈I〉 the
mean intensity.

In addition to the absence of correlation between the real and
imaginary part of the complex field, the property of circular-
ity refers to the conditions of zero means and equal variances
of its real and imaginary parts, which indicate that the lines
of equiprobability density of the field are circles around zero
in the complex plane. This description of the speckle is valid
for a very rough surface (standard deviation of heights distri-
bution superior to the illuminating wavelength λ) in the case
of many scatterers illuminated. However, dephasings of the
field due to topography of rough surfaces are not properly de-
scribed by random uncorrelated heights distribution and it is
necessary to introduce a correlation between them character-
ized by a correlation length and a corresponding correlation
cell in two dimensions. When only a small number of these
cells are illuminated, the central limit theorem can no longer
be applied. Consequently, the probability density function of
the complex field does not follow Eq. (1) anymore. Then, the
contrast can reach values higher than 1 because of the sporadic
presence of very bright spots.

Surfaces with a roughness lower than the wavelength usually
give rise to non-circular speckle because the phases of the scat-
tered contributions are not uniformly distributed over [0, 2π].
Then, the mean value of the complex scattered amplitude can
depart from zero and the corresponding lines of equiproba-
bility of the field in the complex plane can describe ellipses
or more complicated structures as will be shown in this work.
Such situations give rise to a remaining specular component
in the speckle field, decreasing the observed contrast.

3 PRESENTATION OF THE NUMERICAL
MODEL

The model used in this paper consists first in a random rough
surface generation and then in the calculation of the corre-
sponding scattered field at a given distance in the case of a
Gaussian beam illumination. For a constant set of roughness
parameters and illumination conditions, by iterating this se-
quence a sufficient number of times (from 5,000 to 12,000 times
depending of the complex field distribution in the observation
plane), all the statistical parameters of the generated speckle
field that we have studied reach a stable value with a weak

08028- 2



Journal of the European Optical Society - Rapid Publications 3, 08028 (2008) I. Bergoënd, et. al.

remaining oscillation that will be represented as uncertainty
bars on the following graphs. We have chosen a correlated
Gaussian surface that exhibits a Gaussian height distribution.
This surface profile, intensively studied in the past decades,
allows the validation of our approach by comparison with
previous experimental and theoretical studies at particular re-
gions of the circular Gaussian transition where data are avail-
able. Moreover, it represents a sufficiently simple model for a
good understanding of the coupling between the circular and
Gaussian transitions.

The discretized and correlated profile S(ξ, η) of the random
surfaces that will be used to generate the random phase
screens are calculated by the following equation [17] :

S(ξ, η) = FT−1
[√

FT[A(ξ, η)].FT[X(ξ, η)]
]

where :

A(ξ, η) = H2
RMS exp

[
− ξ2 + η2

L2
c

]
with :

• HRMS the standard deviation of the surface heights dis-
tribution that will be simply referred as “roughness” in
the forthcoming sections

• Lc the correlation length of the surface heights distribu-
tion

• X(ξ, η) an uncorrelated Gaussian random function with
zero mean and standard deviation of unity

FT denotes here a discrete bidimensional Fourier Transform.

The initial scalar field characterized by a Gaussian amplitude
distribution and a wavelength λ = 632 nm impacts the sur-
face parallel to its normal. Its waist ω0 is chosen to be located
on the mean level of the surface. The field undergoes the de-
phasing associated with the random correlated Gaussian sur-
face and the scattered field at the distance z in the transverse
plane (x, y) is then calculated using the Fresnel diffraction in-
tegral [18]:

Ẽd(x, y, z) =
∫∫
S

Ẽ(ξ, η).G̃(x − ξ, y− η, z)dξdη

with G̃ the propagator in the paraxial approximation :

G̃(x − ξ, y− η, z) =
eikz

iλz
. exp

[
ik
2z

(
(x − ξ)2 + (y− η)2

)]
and Ẽ(ξ, η) the initial Gaussian beam of maximum amplitude
unity that has been dephased according to the correlated sur-
face profile S(ξ, η):

Ẽ(ξ, η) = exp
[
− ξ2 + η2

ω2
o

]
. exp [ikS(ξ, η)]

The previous calculation is performed using Fourier Trans-
forms :

Ẽd(x, y, z) = FT−1 [
FT[Ẽ(ξ, η)].FT[G̃(x − ξ, y− η, z)]

]

As our aim is to study the circular Gaussian transition of a
speckle field, we do not take into account more complicated
phenomena such as volume or multiple surface scattering.

For the analysis of the scattered field, we define at a distance z
in an observation plane parallel to the surface, square Regions
Of Interest (ROIs) that are smaller at least by a factor of 10
compared to the speckle grain size and that are used to char-
acterize the complex field at different places. Concerning the
study in Section 5 the first ROI is located on the optical axis
at the distance 0.75zR from the surface, zR being the Rayleigh
distance. Other ROIs are used to perform a radial study at the
same longitudinal distance : the step between two consecutive
radial ROIs has been calculated every 0.1ω, where ω is the
size that the beam would have at the longitudinal distance of
observation without any rough surface. In consequence, each
realization of a rough surface with the calculation of the cor-
responding scattered field gives a set of radial values for the
real and imaginary parts of the field. We would like to em-
phasize that due to our choice about the size of the ROI com-
pared to the grain size, the statistical parameters of the scat-
tered speckle field are not defined for each realization of sur-
face but are deduced from the whole realizations, each of them
bringing one sample value of the complex scattered field for
a given radial distance. Let In(r) be the intensity measured at
the radial distance r in the nth realization and N the number
of realizations. The mean intensity and the standard deviation
of the intensity are then calculated by :

〈I(r)〉 =
1
N

N

∑
n=1

In(r) (3)

and

σI(r) =

√√√√ 1
N − 1

N

∑
n=1

(In(r)− 〈I(r)〉)2 (4)

Then we can calculate the contrast as C = σI/〈I〉. This method
used for the determination of the statistical parameters of the
speckle field is different for example from the method of Fujii
et al. [9], who made ensemble averages of the contrast mea-
sured inside each image. In our case, it is representative of an
experimental setup where a photodiode (with a detection area
much smaller than the grain size) is used to measure the inten-
sity while the surface is scanned. Moreover, the advantage of
this method is that the measured data are independent of the
grain size, which is not always the case when the statistical
parameters are deduced from an ensemble of measurements
inside the same image.

4 COMPARISON WITH PREVIOUS
RESULTS IN FAR FIELD : ON-AXIS
SPECKLE CONTRAST IN A GAUSSIAN
TRANSITION FOR A LOW ROUGHNESS
SURFACE

Before studying the circular Gaussian transition in near field,
we propose here some calculations in far field concerning a
Gaussian transition that has been previously studied from
a ground glass sample. In this experiment performed by
P. J. Chandley et al. [19], the Gaussian transition has been de-
scribed by enlarging the beam waist size from 5 µm to 100 µm
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for a constant correlation length of the surface height fluctua-
tions of 20 µm. In Figure 1, we compare their experimental re-
sults concerning the on-axis speckle contrast for a roughness
value of λ/3 at λ = 632 nm with both our results and the the-
oretical ones from H. M. Escamilla [7]. This latter model uses
a multinomial expansion of the second moment of intensity in
powers of the random phase fluctuation and is available for
low roughness values and for on-axis positions only due to an
accumulation of errors during the computation that limits the
order of this expansion. However, this model is expected to be
efficient for the description of the experiment cited above. We
observe that the three on-axis contrast curves exhibit a similar
behaviour with a common value of the maximum for a laser
spot radius of about 1.5 Lc. Moreover, we notice a good match-
ing between the theoretical data from H. M. Escamilla and our
numerical results until the illumination beam waist reaches
80 µm where our contrast becomes slightly higher, and ex-
hibits a slope very similar to experimental data. As mentioned
by H. M. Escamilla, the experiment that uses liquids of various
refraction indices sandwiched between the ground glass and a
polished slide to allow measurements with different standard
deviation of the wavefront height, can undergo multiple re-
flections that can have a significant influence on the measured
contrast. On the other hand, we see that the stronger differ-
ence between theoretical curves and experiments occur in the
highly non Gaussian regime, where only 1/4 of a correlation
length is illuminated. This could be explained by the fact that a
such very localized illumination of the surface exhibits a more
detailed microscopic structure of the ground glass that is no
more efficiently described by a Gaussian correlated surface.
In favour of this hypothesis, it has been shown, with atomic
force microscopy [20, 21] that ground glass generally exhibits
a surface morphology including fractal characteristics.

FIG. 1 Speckle contrast versus laser spot radius : comparison between our results, an

analytical calculation [7] and experimental data [19]. Lc = 20.3 µm, HRMS = λ
3 ,

λ = 632 nm.

5 THE CIRCULAR GAUSSIAN TRANSITION
IN NEAR FIELD

As pointed out in the introduction, a part of the circular Gaus-
sian transition is still poorly described at this time. On the ex-
perimental point of view, it is difficult to have samples with
the same correlation length of the surface heights distribution
but with increasing surface roughness values. Moreover, the
use of liquids with different refraction indices for changing the
roughness value of the surface compared to the wavelength

is suspected to induce multiple reflections. On the theoretical
point of view, the fact that the central limit theorem is no more
usable when only a few correlation cells are illuminated has
strongly limited the theoretical studies in this range and most
of them are submitted to approximations. In consequence, we
propose in this section to give results concerning the speckle
contrast, the degree of circularity and the degree of asymme-
try in the circular Gaussian transition, in the only paraxial ap-
proximation. Radial dependence of the statistical parameters
will be also given. The longitudinal distance of observation
has been chosen in the near field of the illuminating Gaussian
beam because this region is of particular interest due to the
fact that the speckle field exhibits a strong correlation between
its real and imaginary part [6].

We have calculated with the model described in Section 3 the
complex field at the distance z = 0.75zR from the surface
with standard deviations of the surface heights distribution
HRMS of λ/10, λ/5, λ/3, 2λ/3, and λ. For each of these val-
ues, we have performed the Gaussian transition by enlarging
the beam waist wo at a constant value of Lc = 35 µm, in order

to illuminate from nc = ω2
o

L2
c

= 0.25 to nc = ω2
o

L2
c

= 20 correla-
tion cells. The radial dependence of the complex field in the
observation plane has been studied from r = 0 to 2w.

5.1 Speckle f ield distr ibution in the
complex plane

For a better qualitative understanding, we propose first to
show the distribution of the on-axis speckle field in the com-
plex plane in several characteristic regions of the circular
Gaussian transition in Figure 2. Let us first focus our attention
on the column corresponding to nc = 20 of Figure 2 that is ex-
pected to describe the near Gaussian regime. We see that with
an increasing roughness value, the elliptic shape of the com-
plex field distribution tends toward a circular one and that
the mean value of the field vanishes. A non circular shape
traduces the fact that the standard deviation of the real and
imaginary part of the field are not equal. A non zero mean
value of the field traduces a remaining specular component
of the speckle field that is then called a partially developed
speckle. Such variations of the shape of the distribution plot
in the complex plane will be characterized with the degree of
circularity ζ in Section 5.3.

Let us now look at the case {nc = 0.25; HRMS = λ/10} that
corresponds to a highly non circular and non Gaussian
regime. We observe a very particular “moon shape” that
evolves, with increasing roughness values at nc constant,
toward a spiral shape that is clearly observable until we
exceed a roughness value of λ/3. From the same case
{nc = 0.25; HRMS = λ/10}, at a constant roughness value
but with an increasing number of illuminated correlation
cells, the distribution evolves toward an elliptic shape. In
fact, the spiral and elliptic shape distributions in near field
exhibit some dependence between the real and imaginary
part of the field, that will be studied in Section 5.4. In order to
understand from a qualitative point of view the spiral shape
of the complex field distribution, we have to notice that in
such a strongly non Gaussian regime (nc = 0.25), the laser
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beam illuminates much less than one correlation cell of the
surface heights distribution. As a consequence, the dephasing
mask encountered by the beam approaches the one of an
inclined dephasing plane that tends to deviate this beam. For
a given set of Lcorr and HRMS parameters, due the Gaussian
distribution of the function X(η, ξ), the slope of this inclined
dephasing plane is going to vary among the different realiza-
tions of surfaces. Let consider first a realization giving rise to
a null inclination of the dephasing plane. The non deviated
beam will then remained centered on the on-axis ROI and
this situation will give rise to a maximum detected amplitude
with a low maximum value of dephasing (region A in
Figure 2 for the case {nc = 0.25; HRMS = λ/5} for example).
Let now consider a realization corresponding to a maximum
inclination of the dephasing plane. This situation will give
rise to a maximum deviation of this beam that corresponds
to the lowest detected amplitude on the on-axis ROI and to a
strong maximum dephasing inside the beam (giving rise to a
longer length of the spiral). This latter situation corresponds
to region B of the same figure mentioned above.

FIG. 2 Distribution plot of the on-axis speckle field in the complex plane presented

at some characteristic regions of the circular Gaussian transition at the distance z =

0.75zR. nc represents the number of illuminated correlation cells and HRMS the

roughness of the surface.

The column corresponding to nc = 5 is just presented to
show a transition between the strongly non Gaussian case
(nc = 0.25) and the near Gaussian one (nc = 20). Figure 3
represents the intensity distribution of the field around the
optical axis for the situations corresponding to the ones of Fig-
ure 2. Especially, it exhibits the fact that the distribution plots
showing a dependence between the real and imaginary part of
the field in Figure 2 (cases of spiral and ellipse shapes distri-
butions) are correlated with the presence of a strong remain-
ing specular component of the speckle field. Moreover, we ob-
serve that for a high roughness value (2λ/3) and in the near

FIG. 3 Examples of intensity distributions in the observation plane at the distance z =

0.75zR, around the optical axis, at some characteristic regions of the circular Gaussian

transition corresponding to the Figure 2. nc represents the number of illuminated

correlation cells and HRMS the roughness of the surface.

Gaussian regime, the 20 correlation cells that contribute to the
scattering are not sufficient to generate a stationary speckle
field distribution. We would like to point out that all the plots
of Figure 2 have undergone a suitable rotation in the complex
plane in order to align the major and minor axis of ellipses
(or similar structures) with the ones of the coordinate system
(referenced to (O,X,Y) in Figure 4). As so, instead of getting
the values of σr and σi for the standard deviation of the real
and imaginary part of the field, we get the values σx and σy
in the newly rotated (O,X,Y) coordinate system. We precise
that such coordinate system is calculated for each ensemble
of realizations of the scattered field corresponding to a given
set of initial parameters (HRMS, Lc, illumination diameter and
position of the observation ROI). This latter coordinate sys-
tem will be used also for the calculation of the degree of cir-
cularity in Section 5.3. On the other hand, to characterize the
degree of asymmetry of the field, another rotation will be per-
formed in Section 5.4 to bring the mean value of the complex
field on the real axis (referenced as (O,U,V) on Figure 4), where
the remaining tilt of the ellipses will characterize the correla-
tion between the real and imaginary part of the speckle field.
We would like to point out that such rotations don’t modify
any result concerning the intensity distribution of the speckle
field, but allow to fix some reference coordinates systems suit-
able to follow the evolution of some properties about the real
and imaginary part of the field in the circular Gaussian transi-
tion. A more detailed discussion is proposed in [6].
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FIG. 4 Description of the coordinate systems used to characterize the statistical pa-

rameters of the speckle field. The coordinate system (O,Re{Ẽ},Im{Ẽ}) where the
calculated data are generated is rotated to the coordinate system (O,X,Y) in order to

calculate the standard deviation of the real and imaginary part of the field and is ro-

tated to the coordinate system (O,U,V) for the calculation of the degree of asymmetry.

5.2 Speckle contrast

We have plotted the radial dependence of the speckle contrast
for different roughness values and illumination conditions in
Figure 5 in the circular Gaussian transition. We observe that
in agreement with previous results [6, 7, 12], in the near Gaus-
sian regime (generally defined approximately by nc ≥ 5), and
for an increasing number of illuminated correlation cells, the
contrast is always inferior to one or exhibits an asymptotic be-
haviour towards one. Note that for clarity, we have stopped
the axis plot at nc = 10 and nc = 5 for the higher values of
roughness (λ/3, 2λ/3 and λ) because for each of these graphs,
all the corresponding radial dependence curves were follow-
ing roughly the same straight line until nc = 20. Moreover,
we notice that the contrast gets always stronger when increas-
ing the radial distance. This can be understood by the fact
that when we move away from the optical axis, the remaining
specular component vanishes and the only remaining part of
the field is the diffuse one. In the case of a circular and near
Gaussian speckle, as for example such a field generated by a
surface characterized by HRMS = λ and nc > 5, the rough-
ness is sufficiently strong to scatter the incident field with-
out any remaining specular component. All the radial depen-
dence curves are then superimposed : the scattered field tends
to keep the same statistical properties in all directions.

Moreover, we see that some maxima around nc = 0.25 (Lc =
2ωo) become observable for roughness values ≤ 2λ/3. Such
maxima in the speckle contrast has already been observed in
the far field for objective speckle field [7, 12, 19]. However, we
notice that for the special case of λ/10 at the radial distance
of 2ω, the maximum is no more observable at least in the ob-
served range of illumination conditions.

We would like to emphasize that we can observe a notice-
able radial dependence of the contrast for roughness values
between λ/3 and λ only in a strongly non Gaussian regime
(nc < 2). Such dependence exhibits moreover strong varia-
tions of contrast suitable for experimental discrimination. It is
important to notice that without the use of the non Gaussian

FIG. 5 Radial dependence of the speckle contrast in the circular Gaussian transition

for roughness values of (a) λ/10, (b) λ/5, (c) λ/3, (d) 2λ/3 and (e) λ. Roughness

values higher than λ/3 can be discriminated by the radial dependence of the con-

trast only in a strongly non Gaussian regime when less than 2 correlation cells are

illuminated.

regime, such range of roughness values exhibits a very similar
contrast near one and prevents any experimental determina-
tion of the roughness value.

5.3 Degree of circular ity

The degree of circularity of the complex speckle field can be
defined by [6]:

ζ =
min(σx, σy)
max(σx, σy)

where σx and σy are the standard deviation of the real and
imaginary part of the field in the rotated coordinate system
(O,X,Y) (Figure 4). This parameter is interesting to quantify
the ellipticity of the field distribution in the complex plane
presented in Section 5.1 and can have a non negligible influ-
ence on speckle contrast measurements. For example, Good-
man has shown that the dip of contrast observed near the
image plane of a lens first observed by J. Otsubo and T.
Asakura[22] was due to a transition between circular and non
circular statistics [23]. However, at this time, the behaviour
of the degree of circularity in the circular Gaussian transition
is known only in the Gaussian regime thanks to the work of
Uozumi et al. [6]. Thus, we propose in Figure 6 the plot of the
degree of circularity at four characteristic regions of the circu-
lar Gaussian transition, with its radial dependence, in order
to show the main influence of non Gaussian statistics on the
property of circularity. Moreover, in the near Gaussian region
(nc = 20) and for a roughness value of λ/2π, we could super-
impose some previous data available from Uozumi et al. [6]
that exhibit a good agreement with ours.

Let’s notice that for clarity, we have stopped the plot to the
roughness value of 2λ/3 because the degree of circularity was
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FIG. 6 Degree of circularity at four characteristic regions of the circular Gaussian tran-

sition where (a) nc = 20, (b) nc = 3, (c) nc = 1, and (d) nc = 0.25 correlation cells

are illuminated. Results show good agreement with [6] in the Gaussian regime.

always 1 for higher values, within the uncertainty of our data.
Decreasing the number of illuminated cells from 20 to 0.25 did
not exhibit a significant variation in the degree of circularity
until we reach about nc = 3. In the whole Gaussian transition,
for all roughness values inferior or equal to λ/3, we can ob-
serve a global decrease of the degree of circularity with a de-
creasing illuminated area and an increase of this degree with
increasing radial distance. This latter observation is to corre-
late with the previously observed increase of contrast with the
radial distance, due to the departure from the observation area
containing the remaining specular component. Concerning a
possible discrimination between different roughness values
by using the Gaussian transition, we remark that an obser-
vation at the radial distance r = ω exhibits here the stronger
difference of degree of circularity between the strongly non
Gaussian regime nc = 0.25 and the near Gaussian one nc = 20
with a variation around 0.35 .

5.4 Degree of asymmetry

It is known from [6] that, in the Gaussian regime and for low
roughness values, the speckle field exhibits a linear relation
between its real and imaginary part, mainly present in the
near field of the Gaussian illuminating beam and that neglect-
ing this correlation results in a overestimation of the develop-
ment of the speckle field. In order to study this dependence in
the circular Gaussian transition, we define here, as in the pre-
viously cited reference, the degree of asymmetryW as the cor-
relation coefficient between the real and imaginary part of the
complex speckle amplitude in the coordinate system (O,U,V)
in which the mean imaginary part of the field is set to zero
(see Figure 4). The corresponding analytical expression is then
given by :

W =
〈∆U∆V〉

σUσV

with ∆U = U − 〈U〉, ∆V = V − 〈V〉, σU =
〈
∆U2〉 and σV =〈

∆V2〉 where 〈· · · 〉 represents an average over the different
realizations of the complex field.

With such a definition, in the (O,U,V) coordinate system, the
remaining tilt of the ellipse described by the equiprobability
density function of the field will characterize the degree of
asymmetry between the real and imaginary part of the speckle
field. Especially, a case where the principal axes of the ellipse
are parallel to the ones of the (O,U,V) coordinate system cor-
responds to a null degree of asymmetry whereas on the oppo-
site, a degree of asymmetry of one corresponds to a perfectly
correlated set of real and imaginary values of the field and
then to an ellipse that retracts to a straight line in the com-
plex plane, making an angle of θ = arctan(σV/σU) with the
U axis. As for the degree of circularity, the data of [6] were
available only in the Gaussian regime. Thus, in Figure 7, we
have plotted such degree of asymmetry in 4 characteristic re-
gions of the circular Gaussian transition and superimposed
their results on the Gaussian region for their roughness value
of λ/2π. Again, we can verify the good agreement between
their data and ours in the Gaussian regime.

As a general behaviour, we notice in Figure 7 that the degree of
asymmetry vanishes when the roughness value reaches about
λ/3 in all the Gaussian transition and that it tends to decrease
with the radial dependence, the asymmetry of the field being
contained within the remaining specular component.

Moreover, when describing the Gaussian transition from the
near Gaussian regime (nc = 15) to the highly non Gaussian
one (nc = 0.25), we observe a general decrease of the degree of
asymmetry. However, some maxima, depending of the radial
distance, could be observed during this transition. An exam-
ple of such maximum can be observed within the four graphs
of the Figure 7 for example for the radial distance r = ω where
the degree of asymmetry increases from nc = 15 to nc = 0.5
and then decreases to nc = 0.25. Furthermore, we would like
to point out that for roughness values superior to λ/3, we can
notice some remaining oscillations around zero which ampli-

FIG. 7 Degree of asymmetry at four characteristic regions of the circular Gaussian

transition where (a) nc = 15, (b) nc = 1, (c) nc = 0.5, (d) nc = 0.25 correlation

cells are illuminated. Results show good agreement with [6] in the Gaussian regime.
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tude tends to increase with decreasing illuminated area. In or-
der to explain this behaviour, we propose to come back to Fig-
ure 2 and focus our attention first on a low roughness value
as λ/5 for example. When we are in the near Gaussian regime
where nc = 20 correlated cells are illuminated, we observe
an elliptic shape of the distribution plot of the speckle field.
This elliptic shape, once rotated in the (O,U,V) coordinate sys-
tem exhibits a strong remaining tilt traducing an important
correlation between the real and imaginary part of the field.
However, when we decrease the illuminated area, this linear
dependence evolves toward a quadratic one, giving rise to the
spiral shape in the complex plane (qualitatively explained in
Section 5.1). The degree of asymmetry then reads this latter
distribution as a succession of small linear dependencies giv-
ing alternatively positive and negative contributions to W de-
pending on the sign of ∆U.∆V along the spiral. Then we can
see in Figure 7(d) that with increasing roughness value (that
corresponds to an increasing length of the spiral), the degree
of asymmetry exhibits some oscillations around zero which
sign depends whether, for a given value of roughness, the sum
of all the contributions of ∆U.∆V along the entire spiral length
gives a global positive or negative sign.

As a conclusion of this section, the transition from Gaus-
sian statistics to non Gaussian statistics is characterized for
low roughness values, by a dependence between the real and
imaginary part of the speckle field that evolves from a linear
one to a quadratic one.

6 CONCLUSION

We have proposed a numerical approach to study optical
speckle fields in the circular Gaussian transition where the
contrast, the degree of circularity and the degree of asymme-
try have been plotted with their radial dependence, in near
field. Results of the numerical simulations have shown good
agreement with previous works in the Gaussian regime when
the central limit theorem can be applied and in the non Gaus-
sian regime in the approximation of low roughness values.
Moreover, for low standard deviation of surface heights distri-
butions, we have shown that the linear dependence between
the real and imaginary part of the speckle field in the Gaussian
regime evolves toward a quadratic one in the non Gaussian
regime, giving rise to spiral shapes distribution plots in the
complex plane. Describing the circular Gaussian transition,
we have demonstrated that the contrast and especially its ra-
dial dependence could be used to discriminate between differ-
ent surface roughness values even in the range [λ/3, λ] by the
use of a strongly non Gaussian regime when less than two cor-
relation cells are illuminated. This result gives new insights for
the experimental characterization of Gaussian surfaces : a de-
creasing laser spot radius can describe the Gaussian transition
thus allowing the discrimination between roughness values in
the full range [0, λ]. Let us remark that Gaussian statistics can
be fully reached only in the case of an infinite number of scat-
tering cells. A forthcoming article is underway concerning the
characterization of the departure from Gaussian statistics in-
side the circular Gaussian transition studied in this paper. The
numerical model proposed here can be extended to the study

of other types of random surfaces, with different tilts of the
illuminating beam, in near and far field.
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