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An experimental method to visualize a 3D-region of interest (ROI) by means of an astigmatic Gaussian beam is proposed. This method
allows to reduce the amount of image planes to be reconstructed thus saving computational time. ROI determination is performed without
any computational step: particles that are located in the ROI can be distinguished from the others according to the hyperbolic shape of their
diffraction pattern. Theoretical location of the ROI is determined by using the ABCD approach proposed in a previous paper [1]. Experimental
results are presented. [DOI: 10.2971/jeos.2009.09038]
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1 INTRODUCTION

Digital holography is a recognized optical technique used in
a wide range of experiments. For instance fluid mechanics
domain benefits from the 3D information given by a digital
hologram [2]. Theoretical concepts governing image forma-
tion (e.g. influence of pixel mapping, influence of focus, etc.)
are now well understood [3]. However, due to its large depth
of field, this technique makes it difficult to accurately locate
the object along the optical axis without tedious numerical cal-
culation. Depth of focus reduction has been successfully per-
formed in particle field holography [4]. Nevertheless a priori
knowledge on the particle diameter is needed. Bringing ob-
jects to focus is therefore a challenging problem. Automated
procedures based on the object spectral, complex or ampli-
tude [5]–[7] signature allow to determine the best focus, mak-
ing fully automatic hologram treatment possible [8]. Nonethe-
less these procedures involve heavy calculation (mainly be-
cause of the hologram reconstruction) that might be a severe
handicap when dealing with a large amount of objects in the
volumes. Information about the size and position of objects
within the studied volume can be obtained without hologram
reconstruction [9, 10], but these methods are either limited by
the object density in the sample or give a mean information.
One way to overcome this problem is to select only a limited
zone to be treated in the total volume. Li et al. propose a nu-
merical method to extract 3D-ROI from digital holograms [11].
By using a fast focus detection algorithm, summing recon-
struction kernels at focus positions and segmenting the result-
ing hologram, the authors manage to extract 3D-ROI informa-
tion without bulk hologram reconstruction.

Here, we suggest to use digital in-line holography with astig-
matic Gaussian beams to select a 3D-ROI, in a pipe flow, di-
rectly from the hologram, without any computational step.
Recently, an analytical solution of the scalar diffraction pro-
duced by an opaque disk, centered on the optical axis, under
elliptical astigmatic Gaussian illumination, within the frame-
work of Fresnel approximation, has been proposed [12]. Astig-
matism is controlled using a plano-convex cylindrical lens,
and particle-to-beam waist position can be determined us-
ing the produced diffraction pattern shape. Information about
the diffracting object is then easily retrieved using the frac-
tional Fourier transformation (FRFT). These calculations re-
main valid when we consider an object which not centered
on the optical axis [13], making it possible to study flows un-
der astigmatic illumination. Flow study in presence of astig-
matism has been successfully performed [1]. Astigmatism is
here brought by a cylindrical plano-concave glass pipe. Using
Fresnel integral combined with an ABCD formalism, the au-
thors managed to simulate holograms with a good agreement
with experimental data. Therefore, it may be possible to con-
trol astigmatism within the pipe and above all, to select parti-
cles to be reconstructed according to their diffraction pattern
shape [1, 12, 13].

2 THEORETICAL LOCATION OF ROI

To perform the particle selection, let us consider the experi-
mental set-up of Figure 1. The distance between the pinhole
and the pipe is denoted by zp. After passing through the clas-
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FIG. 1 Schematic representation of the optical set-up (not to scale). Definition of the

numerical and experimental parameters.

sical 50 mm focal length lens, the incident beam propagates to
the pipe over a distance denoted zl . The pipe is modeled as
two thick lenses. Their thickness is denoted by e. The opaque
objects are located between these two lenses: at a distance δ

from the first thick lens and at a distance zi from the second
lens. The 1280× 1024 CCD sensor, with a 6.7 µm pixel pitch,
is located at a distance zCCD from the pipe and records the in-
tensity distribution of the diffraction pattern. Using the gener-
alized Huygens-Fresnel integral, the intensity distribution in
the CCD sensor plane is found to be [1]

I (x, y) =
1

λ2Bx
2 By

2

(
|R|2 − 2<

{
RO
}

+ |O|2
)

. (1)

Here, R is associated with the reference beam and O with the
diffracted part of the beam. Their mathematical expressions
are

R (x, y) =
∫

R2
G1 (ξ, η) exp

[
i

π

λBx
2

(
Ax

2ξ2 − 2xξ + Dx
2 x2
)]

× exp
[

i
π

λBx
2

(
Ay

2η2 − 2yη + Dy
2y2
)]

dξdη (2)

and

O (x, y) =
∫

R2
G1 (ξ, η) T (ξ, η)

× exp
[

i
π

λBx
2

(
Ax

2ξ2 − 2xξ + Dx
2 x2
)]

× exp

[
i

π

λBy
2

(
Ay

2η2 − 2yη + Dy
2y2
)]

dξdη. (3)

Here, G1 (ξ, η) denotes the amplitude distribution in the object
plane and T (ξ, η) is the transfer function of the object. Further
explanations about Ax,y

2 , Bx,y
2 , Dx,y

2 , and I (x, y) are given in [1]
and in Appendices A and B.

In the set-up of Figure 1, the astigmatism is brought by the
cylindrical shape of the pipe. In this case, divergence of the
beam is different along ξ- and η-direction. In order to control
the astigmatism of the experimental set-up, the beam is focal-
ized in the pipe. Due to the pipe geometry, the beam is succes-
sively focused in two waists in the studied volume; one waist
along ξ-direction and the other along η-direction. The graph
of Figure 2 illustrates this fact. Here, the evolution of the 1/e
beam width in both directions ωξ,η is plotted versus the depth
position δ in the pipe. Simulation parameters are the follow-
ing: zp = 250 mm, zl = 37 mm. The pipe considered is a glass
made (n1 = 1.5) plano-concave cylinder and is zi + δ = 36 mm
in internal diameter. Its thickness along the optical axis is
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FIG. 2 Evolution of the beam width against position in the pipe. The ROI is located

between the beam waists.

e = 12 mm and it is filled with water (n2 = 1.33). The fact
that the beam presents two waists in the pipe is clearly ob-
servable from Figure 2; each waist corresponds to a minimum
of the ωξ,η against δ curve. The sagittal and tangential focii
are located at δ = 28 mm and δ = 33 mm respectively. For
δ = 30 mm the two curves intersect, this is the medial focus.
It should be noticed that between the sagittal and tangential
focii, the wavefront curvature radii exhibit opposite signs in
both directions. Thus objects located within this zone will lead
to hyperbolic shaped diffraction patterns, whereas particles
located apart from these focii will produce elliptical shaped
diffraction patterns [12]. It is hereby possible to distinguish
objects located between the two beam waists of objects located
elsewhere. In other words, objects located between sagittal
and tangential focus will belong to the ROI, whereas other ob-
jects will not be processed. Therefore, knowing the 1/e beam
radii (ωξ,η) within the pipe, it is therefore easy to estimate
the ROI volume. The ROI spread over 3.7 mm3 whereas the
recorded volume, which corresponds to the amount of fluid
which is illuminated by the beam, is approximately 884 mm3.
We would like to draw attention on the fact that adjusting pa-
rameters of the beam within the pipe will modify the ROI vol-
ume or the ROI position. For instance, modifying the lens po-
sition or focal distance will result in modifying size and posi-
tion of the ROI.

Theoretical aspects about the ROI determination have been
presented. Using the beam astigmatism gives the opportunity
to select a small region within which the hologram will be re-
constructed. As we aim to reconstruct holograms in the pres-
ence of astigmatism, the fractional Fourier transform (FRFT)
will be applied to the intensity distribution given in Eq. (1).
As a matter of fact, this operator is well adapted to this situa-
tion [13]. In Section 3, mathematical expression of the FRFT is
recalled and optimal reconstruction parameters are derived.
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3 FRACTIONAL FOURIER TRANSFORM
ANALYSIS OF THE RECORDED
HOLOGRAMS

3.1 Two-dimensional Fract ional Fourier
Transform

The FRFT is a generalization of the classical Fourier transform.
This integral operator is widely applied in signal process-
ing [14]. The FRFT of order ax = (2αx)/π and ay = (2αy)/π

(for x and y cross section respectively), with 0 ≤ |αx| ≤ π/2
and 0 ≤

∣∣αy
∣∣ ≤ π/2, of a two dimensional function I (x, y) is

given by,

Fαx ,αy [I(x, y)](xa, ya) =∫
R2

Nαx (x, xa) Nαy (y, ya)I(x, y) dx dy (4)

where the kernel of the fractional operator is defined by

Nαp (x, xa) =

C(αp) exp

(
iπ

x2 + x2
a

s2
p tan αp

)
exp

(
− i2πxax

s2
p sin αp

)
(5)

and

C(αp) =
exp(−i( π

4 sign(sin αp)−
αp
2 ))

|s2
p sin αp|1/2 . (6)

Here, p = x, y. The coefficient C(αp) ensure the energy con-
servation in every fractional domains. Generally, sp is consid-
ered as a normalization constant, but its value can be linked
to the experimental set-up [13]. In this case, s2

p = Npx
p × δ2

p.
The number of samples is Npx

p in both intensity distribution
I (x, y) and fractional domain. δp is the sampling period along
the two axes of the image.

3.2 Optimal fract ional orders

FRFT reconstruction consists in canceling quadratic phases
contained by the intensity distribution of the hologram. The
intensity distribution is given Eq. (1). We can notice that the
terms |R|2 and |O|2 do not contain any quadratic phases.
Thus, they will not be treated by FRFT. The quadratic phases
to be analyzed are contained in <

{
RO
}

. As revealed by Eqs.
(35) and (40), this term is composed of a linear chirp modu-
lated by a sum of complex Gaussian functions. Compensating
this chirp will result in reconstructing the hologram.

The quadratic phases can be determined from Eqs. (35) and
(40),

ϕ =
π

λ

[(
Mx − Dx

2
Bx

2

)
x2 +

(
My − Dy

2

By
2

)
y2

]
(7)

thus <
{

RO
}

can be written as

<
{

RO
}

=
∣∣RO

∣∣ cos (ϕ) . (8)

The quadratic phase term contained in the FRFT kernel, de-
noted ϕa, is given by

ϕa = π

(
cot αx

s2
x

x2 +
cot αy

s2
y

y2

)
(9)

To reconstruct the hologram, the FRFT is applied to the inten-
sity distribution given Eq. (1),

Fαx ,αy [I(x, y)] ∝

Fαx ,αy

[
|R|2 + |O|2

]
− 2Fαx ,αy

[ ∣∣RO
∣∣ cos ϕ

]
. (10)

We would like to draw attention on the fact that the terms |R|2

and |O|2 contain no linear chirps. They will not influence the
optimal orders to be determined. Only the second term will
be useful for image reconstruction.

By noting that 2 cos ϕ = exp (−iϕ) + exp (iϕ), Eq. (10) be-
comes

Fαx ,αy [I(x, y)] ∝ Fαx ,αy

[
|R|2 + |O|2

]
−
{

C (αx) C
(
αy
) ∫

R2

∣∣RO
∣∣ exp [i (ϕa − ϕ)]

× exp

[
−i2π

(
xax

s2
x sin αx

+
yay

s2
y sin αy

)]
dxdy

}

−
{

C (αx) C
(
αy
) ∫

R2

∣∣RO
∣∣ exp [i (ϕa + ϕ)]

× exp

[
−i2π

(
xax

s2
x sin αx

+
yay

s2
y sin αy

)]
dxdy

}
. (11)

Reconstruction of the hologram is performed when one of the
quadratic phase terms is brought to zero. In this case,

ϕa ± ϕ = 0. (12)

Thus, the optimal fractional orders α
opt
x and α

opt
y defined from

Eqs. (7), (9) and (12) take the values

α
opt
x = arctan

[
∓

Bx
2 λ

s2
x
(

Mx − Dx
2
)]

α
opt
y = arctan

∓ By
2λ

s2
y

(
My − Dy

2

)
 . (13)

4 EXPERIMENTAL RESULTS

To illustrate the interest of our idea, an experimental hologram
is recorded. The optical set-up of Figure 1 is considered. The
distance between the 15 µm pinhole and the pipe is fixed to
zp = 250 mm and a 50 mm focal length lens is positioned
zl = 37 mm before the pipe. The glass made pipe is filled with
water and illuminated with an He-Ne laser (λ = 632.8 nm).
50 µm in diameter latex beads are injected in the ROI and
the intensity distribution produced by these is recorded on
a CCD sensor without objective lens. Distance between the
CCD sensor and the pipe is zCDD = 18 mm. According to
the experimental parameters, the ROI will be located between
δ = 28 mm and δ = 33 mm (position of the sagittal and
tangential focus respectively). The intensity distribution ob-
tained under these conditions is presented in Figure 3. We
can realize from the hologram that elliptical and hyperbolic
fringe patterns are simultaneously observed. Elliptical pat-
terns are due to particles that are located outside the ROI,
i.e. δ ∈ [0 mm; 28 mm[ ∩ ]33 mm; 36 mm], whereas hyperbolic
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FIG. 3 Experimental hologram of 50 µm latex beads recorded with zp = 250 mm,

zl = 37 mm, and zCCD = 18 mm. Two particles are in the ROI.

shaped diffraction patterns are due to particles that are in the
ROI, i.e δ ∈ [28 mm; 33 mm]. Thus by simply looking at the
hologram of Figure 3, without using complex shape recogni-
tion procedure, we can notice that two particles (labeled “1”
and “2”) are located in the ROI. Information about these two
particles can be retrieved by reconstructing the hologram only
in the ROI, thus reducing the amount of data to be processed.

Reconstruction of this hologram can be performed using
FRFT [14]. In fact, FRFT is a really efficient reconstruction op-
erator when dealing with astigmatic holograms [1, 12, 13]. Nu-
merical refocusing on particle “1” is proposed Figure 4(a). Re-
constructed image of the particle is obtained by adjusting the
fractional orders of the FRFT within the range defined, from
Eq. (13), by the ROI position. Particle is considered in focus
when the best contrast (determined by plotting intensity pro-
files along particle axis) between the image of the latter and
the background is reached. To refocus on particle “1”, a FRFT
of orders ax = 0.71, ay = −0.8 is performed. It should be
noted that the FRFT orders have opposite signs. This is due to
the fact that, within the ROI, wavefront curvature radii exhibit
opposite signs. Refocusing on particle “2” (see Figure 4(b)) is
possible with ax = 0.61, ay = −0.88.

5 CONCLUSION

In summary, we have proposed and demonstrated a con-
vienent method to select a 3D-ROI within an hologram. This
achievement is of great interest as it does not need bulk com-
putational treatment; the 3D-ROI selection is experimentally
performed by using the astigmatic properties of pipe flows.
Working within a limited 3D-ROI is a good way to reduce
the amount of data to be treated or to refine hologram pro-
cessing in a limited zone. Experimental implementation has
been performed showing the possibility of optically selecting
a 3.7 mm3 ROI within a 884 mm3 studied volume. Finally, par-
ticles contained in the ROI have been reconstructed using the
fractional Fourier transform.

(a)

(b)

FIG. 4 FRFT reconstruction of Figure 3 with (a) ax = 0.71 and ay = −0.8 (b) ax = 0.61

and ay = −0.88
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A TRANSFER MATRICES OF THE OPTICAL
SYSTEM

Each part of an optical system can be represented by a ma-
trix. Using this principle, we can build a set of matrices corre-
sponding to our experiment (Figure 1). After passing through
the pinhole, the beam propagates in free space over a distance
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zp–zl . The associated Mzp–zl matrix is

Mzp–zl =
(

1 zp − zl
0 1

)
. (14)

The beam is then focalized by a thin spherical lens. The focal
distance of this lens is denoted by f . The associated transfer
matrix Mlens is

Mlens =

(
1 0
− n0

f 1

)
. (15)

After the thin lens, the beam propagates, over a distance zl , to
the pipe. The matrix Mzl , associated with this step, is given by

Mzl =
(

1 zl
0 1

)
. (16)

Then the beam is refracted at the interface between free space
and glass (n1 = 1.5). The curvatures along both directions are
Rx1 and Ry1. MRx1 , MRy1 matrices along x and y axis are

MRx1 =

(
1 0

n0−n1
Rx1

1

)
MRy1 =

(
1 0

n0−n1
Ry1

1

)
. (17)

After refraction, the beam propagates in glass (n1 = 1.5). For
this step,

Me =

(
1 e

n1

0 1

)
. (18)

Next step is the refraction of the beam at the interface between
glass and the medium inside the pipe (refractive index n2).
Curvatures Rx2 and Ry2 in x and y direction are given by

MRx2 =

(
1 0

n1−n2
Rx2

1

)
MRy2 =

(
1 0

n1−n2
Ry2

1

)
. (19)

We are now in the pipe. To reach the object, we have to prop-
agate over δ,

Mδ =

(
1 δ

n2

0 1

)
. (20)

Doing the same over zi permit us to reach the output of the
pipe,

Mzi =

(
1 zi

n2

0 1

)
. (21)

After a refraction at the interface (curvatures Rx3 and Ry3) be-
tween the medium with refractive index n2 and glass,

MRx3 =

(
1 0

n2−n1
Rx3

1

)
MRy3 =

(
1 0

n2−n1
Ry3

1

)
, (22)

a propagation in glass (n1 = 1.5),

Me =

(
1 e

n1

0 1

)
, (23)

a refraction at the interface (curvature Rx4 and Ry4) between
glass (n1 = 1.5) and free space,

MRx4 =

(
1 0

n1−n0
Rx4

1

)
MRy4 =

(
1 0

n1−n0
Ry4

1

)
(24)

and free space propagation over zCCD,

MzCCD =
(

1 zCCD
0 1

)
, (25)

the whole ABCD system is described.

B AMPLITUDE DISTRIBUTIONS R (x, y)
AND O (x, y)

In Appendix A each part of our optical system has been rep-
resented with transfer matrices. Using this formalism allows
us, under paraxial conditions, to deal with propagation of a
Gaussian point source through the pipe.

Intensity distribution of the diffraction pattern in the CCD
sensor plane is determined by considering two matrix systems
Mx,y

1 and Mx,y
2 .

Mx,y
1 is composed of five steps; propagation in free space

over zl − zp, beam focalization, propagation in free space over
zl , propagation through the first thick lens, propagation in a
medium of refractive index n2 over δ. These steps are charac-
terized by two transfer matrices,

Mx,y
1 = Mδ ×Mx,y

L1
×Mzl ×Mlens ×Mzp–zl

=
(

Ax,y
1 Bx,y

1
Cx,y

1 Dx,y
1

)
. (26)

Mx,y
2 is also composed of three steps; propagation in a

medium of refractive index n2 over zi, propagation through
the second thick lens, propagation in free space over z.
Transfer matrices for this system are,

Mx,y
2 = MzCCD ×Mx,y

L2
×Mzi =

(
Ax,y

2 Bx,y
2

Cx,y
2 Dx,y

2

)
. (27)

Thanks to Eqs. (17)–(19) one can build the transfer matrices of
the first thick lens,

Mx
L1

= MRx2 ×Me ×MRx1

My
L1

= MRy2 ×Me ×MRy1 . (28)

By using the same method for the second lens, we obtain

Mx
L2

= MRx4 ×Me ×MRx3

My
L2

= MRy4 ×Me ×MRy3 . (29)
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B.1 Propagation through Mx,y
1

Propagation through Mx,y
1 is calculated using the generalized

Huygens-Fresnel integral,

G1 (ξ, η) =
exp

(
i 2π

λ E1
)

iλ
√

Bx
1 By

1

∫
R2

G (µ, ν)

× exp
[

i
π

λBx
1

(
Ax

1µ2 − 2ξµ + Dx
1 ξ2
)]

× exp

[
i

π

λBy
1

(
Ay

1ν2 − 2ην + Dy
1η2
)]

dµdν. (30)

After analytical developments of Eq. (30), the complex ampli-
tude distribution in the object plane is

G1 (ξ, η) =
exp

(
i 2π

λ E1
)

iλ
√

Bx
1 By

1

Kx
1 Ky

1 exp

[
−
(

ξ2

ω2
1x

+
η2

ω2
1y

)]

× exp

[
−i

π

λ

(
ξ2

R1x

+
η2

R1y

)]
(31)

with Kx,y
1 given by

Kx,y
1 =

 πω2

1− iAx,y
1

πω2

λBx,y
1

1/2

, (32)

ω1x,y and R1x,y are respectively the beam radii and the wave-
front curvature in the particle plane. Their mathematical ex-
pressions are

ω1x,y =

(
λBx,y

1
πω

)1 +

(
Ax,y

1
πω2

λBx,y
1

)2
1/2

R1x,y = −Bx,y
1

Dx,y
1 −

Ax,y
1

(
πω2

λBx,y
1

)2

1 +
(

Ax,y
1

πω2

λBx,y
1

)2


−1

. (33)

B.2 Propagation through Mx,y
2

Propagation to the CCD sensor plane is given by the following
integral,

G2 (x, y) =
exp

(
i 2π

λ E2
)

iλ
√

Bx
2 By

2

∫
R2

G1 (ξ, η) [1− T (ξ, η)]

× exp
[

i
π

λBx
2

(
Ax

2ξ2 − 2xξ + Dx
2 x2
)]

× exp

[
i

π

λBy
2

(
Ay

2η2 − 2yη + Dy
2y2
)]

dξdη. (34)

The integral of Eq. (34) can be split into two integrals R and
O associated with the reference beam and the diffracted beam
respectively. Their expressions are given in Eqs. (2) and (3).

B.2.1 Amplitude distribution R(x, y)

R is associated with the reference wave. After analytical de-
velopments of Eq. (2), the amplitude distribution R is

R (x, y) =
exp

(
i 2π

λ E1
)

iλ
√

Bx
1 By

1

Kx
1 Ky

1Kx
2 Ky

2

× exp

[
−π

λ

(
Nx

Bx
2

x2 +
Ny

By
2

y2

)]

× exp

[
i
π

λ

(
Mx

Bx
2

x2 +
My

By
2

y2

)]
(35)

where

Mx,y = Dx,y
2 +

(
πω2

1x,y

λBx,y
2

)2 (
Bx,y

2
R1x,y
− Ax,y

2

)
1 +

(
πω2

1x,y

λBx,y
2

)2 (
Bx,y

2
R1x,y
− Ax,y

2

)2

Nx,y =

πω2
1x,y

λBx,y
2

1 +
(

πω2
1x,y

λBx,y
2

)2 (
Bx,y

2
R1x,y
− Ax,y

2

)2
(36)

and

Kx,y
2 =

 πω2
1x,y

1 + i
πω2

1x,y

λBx,y
2

(
Bx,y

2
R1x,y
− Ax,y

2

)


1/2

. (37)

B.2.2 Amplitude distribution O(x, y)

O is the amplitude of the diffracted wave. We define ω1x,yeq

and R1x,yeq

1
ω2

1xeq

=
1

ω2
1x

+
<{Bk}

b2

1
ω2

1yeq

=
1

ω2
1y

+ R2
ell
<{Bk}

b2 (38)

and

1
R1xeq

=
1

R1x

+
={Bk}λ

πb2

1
R1yeq

=
1

R1y

+ R2
ell
={Bk}λ

πb2 (39)

to simplify notations. It should be noted that < and = stand
for real and imaginary part respectively. Thus O becomes

O (x, y) =
exp

(
i 2π

λ E1
)

iλ
√

Bx
1 By

1

Kx
1 Ky

1 exp

[
i
π

λ

(
Dx

2
Bx

2
x2 +

Dy
2

By
2

y2

)]

×
N

∑
k=1

AkK
xeq
2 K

yeq
2 exp

[
−π

λ

(
Nxeq

Bx
2

x2 +
Nyeq

By
2

y2

)]

× exp

[
i
π

λ

(
Mxeq

Bx
2

x2 +
Myeq

By
2

y2

)]
(40)
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with

Mx,yeq
=

(
πω2

1x,yeq

λBx,y
2

)2 (
Bx,y

2
R1x,yeq

− Ax,y
2

)

1 +

(
πω2

1x,yeq

λBx,y
2

)2 (
Bx,y

2
R1x,yeq

− Ax,y
2

)2

Nx,yeq
=

πω2
1x,yeq

λBx,y
2

1 +

(
πω2

1x,yeq

λBx,y
2

)2 (
Bx,y

2
R1x,yeq

− Ax,y
2

)2
(41)

and

K
x,yeq
2 =


πω2

1x,yeq

1 + i
πω2

1x,yeq

λBx,y
2

(
Bx,y

2
R1x,yeq

− Ax,y
2

)


1/2

. (42)
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