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Wavelength scale 1D binary gratings of rectangular corrugation profile are often used as diffractive elements acting on incident free space
waves under different incidence angle, wavelength and polarization. Their optical function is best understood by considering the interplay
of the grating modes propagating up and down the periodic walls and slits of the segmented structure. The interference conditions between
modes depend on the difference between the effective index of the interfering modes and on their relative amplitude. This difference and
relative amplitude depend critically on the ratio between the wall and slit widths which is difficult to control technologically. The condition
for a wide tolerance of the effective index difference and for a balanced mode excitation on the wall/slit ratio is found analytically and
once for all for a wide class of 1D gratings. It is also found that TE interference elements may exhibit a very wide wall/slit ratio tolerance
domain. [DOI: 10.2971/jeos.2009.09047]
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1 INTRODUCTION

One-dimensional binary gratings of rectangular corrugation
profile defined at the surface of a transparent substrate or in a
high index film deposited on a substrate exhibit very interest-
ing characteristics which were not expected at the early times
of grating coupled integrated optics [1] despite their structural
simplicity. It is with the advent of photonic crystals [2] in pace
with the development of microelectronics microstructuring
technologies [3] that the scientific and application potentials
of high aspect ratio and high index contrast periodic struc-
tures was realized [4, 5]. Baets et al. [6] found that a TM beam
incident normally from a high index medium onto a binary
grating experiences 100% reflection provided all diffracted or-
ders in the transmission medium are cut off. This mechanism
was used successfully in polarization selective laser reflectors
generating the radial polarization mode [7]. Mawet et al. [8]
found that subwavelength transmission gratings of high in-
dex contrast permit to obtain a very wide band π-phaseshifter.
Chang-Hasnein et al. [9] showed that a segmented high index
layer deposited on top of a low index substrate can give rise to
quasi-100% reflection of a TM-polarized plane wave normally
incident from the air side over a very wide spectral range.
All these properties, and the structures exhibiting them, were
discovered by numerical modelling, applying the FMM, also
called RCWA-method [10] which is reliable if there are no
metallic parts in the corrugation [11]. Such method however
does not give a hint as to the interplay of the eigenmodes of

the segmented structure which is at the basis of all the dis-
closed effects.

Tishchenko first generalized the modal phenomenology and
the related true-mode method [12] for the analysis and syn-
thesis of these infinite periodic waveguides. The modes prop-
agating up and down the periodic grating walls and slits obey
the known dispersion equation first given as early as 1956
by Rytov [13]. Clausnitzer et al. [14]–[16] extended the phe-
nomenological modal approach for the understanding of the
operation of transmission gratings as grating compressors,
laser cavity couplers, and for a more intelligible description of
their properties. Gamet et al. [17] also gave a phenomenologi-
cal interpretation of a novel type of phase masks and a modal
understanding of the operation of the GIRO mirror [7].

Whereas most papers dealing with the modal phenomenology
of binary gratings address the issue of the optical function, the
present paper takes it up in the objective of addressing the is-
sue of fabricability. The operation of most wavelength scale bi-
nary grating devices relies upon the interference between two
grating modes. Under normal incidence as considered in the
present paper, the two modes involved are the even modes of
0th and 2nd order, the 1st order mode having zero field overlap
with the incident plane wave. If the index contrast between
the grating walls and the low index adjacent media is not too
large, the reflection of each mode into itself, as well as the cou-
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pling between the two even modes at the top and bottom of
the grating region, is small and can be neglected in the present
analysis. It is only in the presence of semiconductor walls and
air slits that the modes can be given a second round trip in
the grating region as shown in [17]. In the case of low and
moderate index contrast, the transmission through the grat-
ing is analog to the transmission through a Mach-Zehnder in-
terferometer where the two arms of different length and iden-
tical propagation medium are here the two optical paths of
the 0th and 2nd modes of identical propagation length and
different effective index. The beam splitter and mixer of pos-
sibly imbalanced splitting ratio are here the top and bottom
interfaces between the grating region and the substrate and
cover media where plane waves and grating modes couple
with a possible imbalance between modes. The interference
conditions between modes depend on the difference between
the effective index of the interfering modes and on their rel-
ative amplitude. This difference and relative amplitude de-
pend critically on the ratio between the wall and slit widths
which is very difficult to control technologically since the pe-
riod is of the order of the wavelength. These opto-geometrical
parameters are all involved explicitly in the dispersion equa-
tion which gives the effective index of each mode from where
the modal field, therefore the coupling coefficient, can be cal-
culated analytically. A high contrast interference in the trans-
mission medium requires grating modes of equal amplitude,
i.e., a tight control of the wall/slit ratio. A prescribed phase
shift, π for instance, between the two propagated modes in
a grating region of given depth, requires also a very accurate
control of the wall/slit ratio. Therefore it is an essential task
assigned to the designer to find the grating structure exhibit-
ing balanced mode amplitude and prescribed effective index
difference over a wide range of wall/slit ratio. The condition
for a wide tolerance of the effective index difference and for
a balanced mode excitation on the wall/slit ratio will here be
searched for analytically from the dispersion equation written
in the most normalized form by ultimately reducing the num-
ber of independent opto-geometrical parameters. The result
will be a universal table of normalized parameters ensuring
the desired tolerance condition once for all and for all possi-
ble grating structures except those of very high contrast index.

2 NORMALIZED ANALYSIS OF THE
GRATING MODES

The analysis will here be made for TE modes whose disper-
sion equation is [12],

cos (k1r) · cos (k2 (Λ− r))−
1
2

(
k1

k2
+

k2

k1

)
· sin (k1r) · sin (k2 (Λ− r)) = cos

(
kyΛ

)
(1)

where, as illustrated in Figure 1, Λ is the grating period, r is
the width of the high index walls, k1 = k0(n2

1 − n2
e )1/2 and

k2 = k0(n2
2 − n2

e )1/2 express the exponential dependence ver-
sus the lateral coordinate y of the electric field of the mode
of effective index ne in the walls of high refractive index n1
and in the slits of low index n2, respectively. k0 = 2π/λ is
the spatial frequency of a free space wave in vacuum at wave-
length λ. ky = +1 in case of normal incidence on the grat-
ing region. The TE polarization is considered here as the main
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z
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FIG. 1 Section of grating walls and slits of high and low index n1 and n2, wall width r

and period Λ.

interest of the present study is in the design and fabrication
of phase masks. The TE polarization ensures that the contrast
of the interferogram produced by the phase mask can possi-
bly be 100% whatever the angle of the interfering transmitted
+1st and−1st orders whereas the TM-polarized interferogram
exhibit contrast fading (the TM interference contrast reaches
zero when the ±1st order diffraction angle is 45 degrees in the
transmission medium).

Eq. (1) is purely real and remains real even when ne > n2 in
which case it becomes,

cos (k1r) · cosh (|k2| (Λ− r))−
1
2

(
k1

|k2|
− |k2|

k1

)
· sin (k1r) · sinh (|k2| (Λ− r)) = +1. (2)

There are in Eq. (1) no less than 5 free parameters: λ, n1, n2, Λ,
and r. Each set of 5 parameters determines a set of eigenmodes
having their effective index ne. We will here only consider z-
propagating modes of real effective index, leaving the evanes-
cent modes aside. Moreover, we make the assumption that the
0th and 2nd order modes are propagating, that the higher order
even mode is sufficiently far from cutoff and that the grating is
deep enough to prevent any power transmission through the
grating region by evanescent tunnelling of the 4th order mode.

The normalized parameters are defined as follows: D =
r/Λ < 1 is the duty cycle of a grating period. c = n2/n1 < 1
is the index contrast between slots and walls. p = Λ/(λ/n1)
is the ratio between the period and the wavelength in the high
index walls. The number of free parameters reduces from 5 to
3. A normalized effective index ν is defined as ν = ne/n1 < 1.
With the above normalization definitions, Eq. (1) becomes

A− 1
2

BC− 1 = 0 (3)

where

A = cos
(

2πpD
√

1− υ2
)

cos
(

2πp (1− D)
√

c2 − υ2
)

,

B =
[
(1− ν2)/(c2 − ν2)

]1/2
+
[
(c2 − ν2)/(1− ν2)

]1/2
,

C = sin
(

2πpD
√

1− υ2
)

sin
(

2πp (1− D)
√

c2 − υ2
)

.

The modal field of each mode is given by the expression

Ej(y) =
{

a1 cos
(
k1j (y− r/2)

)
0 < y < r

a2 cos
(
k2j (y− (Λ + r)/2)

)
r < y < Λ

(4)

where the kij terms containing the effective index satisfy the
dispersion equation of mode j and aj are amplitude coeffi-
cients to be determined at the groove-wall boundary y = r,
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a1 = a2
cos

(
k2j(Λ− r)/2

)
cos

(
k1jr/2

) (5)

Each field is normalized by dividing Eq. (4) by the integral of
the modal field square modulus over one period,

ej(y) =



a1
cos

(
k1j (y− r/2)

)[
1
Λ

∫ Λ

0
Ej(y)E∗j (y)dy

]1/2 0 < y < r

a2
cos

(
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)[
1
Λ

∫ Λ

0
Ej(y)E∗j (y)dy

]1/2 r < y < Λ
. (6)

Note that the corresponding normalized field expressions can
be written as follows by introducing a new dimensionless
variable u = y/Λ. For 0 < u < D,

ej(u) = a2

cos
(

2πp
√

C2 − υ2
j (1− D)/2

)
cos

(
2πp

√
1− υ2

j D/2
)

×
cos

(
2πp

√
1− υ2

j (u− D/2)
)

[∫ 1

0
Ej(u)E∗j (u)du

]1/2 , (7a)

and for D < u < 1,

ej(u) = a2

cos
(

2πp
√

C2 − υ2
j (u− (D + 1)/2)

)
∫ 1

0
Ej(u)E∗j (u)du

. (7b)

3 THE SEARCH FOR A WIDE TOLERANCE
ON DUTY CYCLE

The interference condition in a grating mode interferometer is
first determined by the phase difference ∆Φ between the two
branches: ∆Φ = k0d(ne0 − ne2) where d is the depth of the
corrugated region. In the expression of ∆Φ, the wavelength
λ = 2π/k0 is fixed, d can usually be obtained quite repro-
ducibly by the control of dry etching conditions and process
time; it is the effective index difference which is the most dif-
ficult to achieve reproducibly and, for a given set of wall and
slit index n1 and n2, it is a critically dependent function of the
duty cycle D. The reason is that the duty cycle D (or equiv-
alently the wall/slit width ratio) is the result of one litho-
graphic step (with possible transfer of the photoresist grating
into the antireflection coating) and at least one etching step
(two etching steps in the case of electron beam writing be-
cause of the presence of a charge neutralizing chromium layer
with a loss of lateral dimensional accuracy at each step). The
effect of D on the mode effective index is inherently contained
in dispersion Eq. (1). Requiring a large tolerance of the effec-
tive index difference on D amounts to cancelling the partial
derivative of ν0 − ν2 relative to D,

∂ (ν0 − ν2)
∂D

= 0 (8)

As from here on the dispersion equation, Eq. (1), is considered
as a function F(ν, D) = 0 with parameters p and c. Consid-
ering that Eq. (1) is transcendental, the partial derivative of ν

relative to D is derived as,

∂ν

∂D
= − ∂F

∂D

/
∂F
∂ν

(9)

The wide tolerance condition given by Eq. (8) applied to the
Eq.(3) of the dispersion equation writes,
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where
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∂B
∂ν

= ν

(
1− c2)2

(1− ν2)3/2 (c2− ν2)3/2 . (14)

The wide tolerance condition Eq. (10) permits to express one
of the three normalized parameters D, c, p in terms of the
other two. We have chosen the index contrast term c and
the duty cycle D as the independent normalized parameters.
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The problem is now expressed as follows: what is the two-
dimension subset of c and D values which satisfy both the
dispersion equation, Eq. (1), and the wide tolerance condition,
Eq. (10), then what is the related subset of p values, p(c, D),
and optionally, what are the effective index ν0(c, D), ν2(c, D)
and effective index difference ∆ν(c, D) = ν0(c, D) − ν2(c, D)
in the structure characterized by the solution parameters c,
D and p. The information on ∆ν is particularly important to
make available since it is the data from which the grating
depth d is determined for a desired phase shift ∆Φ between
modes at wavelength λ.

The exploration of the domain of c and D is limited to the
range of relevant values. The index contrast c will range
between 0.34 and 0.66. These limits correspond to a grat-
ing made in a silica or glass substrate with air transmission
medium and to a grating in a high index metal oxide such as
iron oxide with an index of about 2.9 with air transmission
medium. Corrugations made in a high index semiconductor
are not considered here because, as shown in [17] with a GaAs
grating, the transmission through such high index contrast
corrugation can not be considered as a single path. One round
trip at least must be taken into account as the effects of the
reflections at the grating region boundaries are not negligi-
ble. A reasonable range of fabricability for the duty cycle D
is from 0.2 to 0.8. The exploration range of c and D must also
correspond to relevant values for the dependent parameter p:
the period/wavelength ratio must be such that the diffraction
orders propagating in the transmission medium of index n2
(the same index as that of the grating slits is assumed) are the
−1st, 0th and +1st orders at most. This condition makes sure
that higher diffraction orders do not spoil the interferogram
produced below the grating by introducing spurious fringes.
The cutoff condition for the second diffraction order in the
transmission medium is p ≤ 2/c. Note at this point that in a
phase mask application the 0th transmitted order must be sup-
pressed to produce a single spatial frequency interferogram;
this will be achieved by balanced destructive interference as
discussed in the next section.

4 THE CONDITION FOR BALANCED MODE
AMPLITUDE

The first condition for high contrast interference in the trans-
mission medium as a result of the beat between the two modes
excited in the grating region is a given phase shift between
them. The condition was established in the previous section
for a wide tolerance of this phase shift on the duty cycle of the
binary corrugation. The second condition for high contrast in-
terference in the transmission medium is now the balanced
excitation of the two modes from the incident plane wave and
a balanced excitation of the transmitted plane wave from the
said two modes in analogy with the request for balanced split-
ter and mixer in a Mach-Zehnder interferometer. This second
condition will be taken into account by simply filtering out
all (c, D) pairs retained above which do not ensure balanced
mode excitation.

Following [17], the transmission coefficient tsj of a normally
incident plane wave from a substrate of refractive index ns

to TE mode j of effective index nej is proportional to an
impedance mismatch term and to the integral over one grat-
ing period of the normalized electric field of mode i times
the incident plane wave field amplitude. Similarly, the trans-
mission coefficient tjc of mode j to the normally transmitted
0th diffraction order in the cover medium of index nc is pro-
portional to the same field integral and to the corresponding
impedance mismatch term.

The condition for a balanced interferometer under the hypoth-
esis of negligible reflection and mode coupling at the borders
of the grating layer is that the product T0 of the transmission
coefficient ts0 of the normally incident substrate plane wave
of field Es to the TE0 grating mode of field E0(y) by the trans-
mission coefficient t0c of the TE0 mode to the normally trans-
mitted cover plane wave of field Ec, T0 = ts0t0c, is essentially
equal to the product T2 of the above transmission coefficients
involving the TE2 mode, T2 = ts2t2c. This writes,

ts0t0c

ts2t2c
∼= 1 (15)

The transmission coefficient tsi of the incident plane wave
to the TEi mode is proportional to the field overlap integral
Es
∫ Λ

0 Ei(y)dy and to the said impedance mismatch term. In
analogy with the expression of the transmission coefficient
through a plane interface between two media of index ns and
ni under normal incidence, the impedance mismatch term is
2
√

nsni/(ns + ni).

The condition for a balanced interferometer, Eq. (15) becomes[∫ Λ

0
e0(y)dy

/∫ Λ

0
e2(y)dy

]2

Q = 1 (16)

where

Q =
n0

(ns + n0)(nc + n0)
(ns + n2)(nc + n2)

n2
(17)

Substituting the normalized parameters in Eq. (16) gives the
normalized condition:[∫ 1

0
e0(u)du

/∫ 1

0
e2(u)du

]2

Q = 1 (18)

It is clear that condition, Eq. (18) with the term Q can not be
expressed by the sole set of normalized parameters. Eq. (18)
contains nc and ns which in specific structures can be different
from n2 and n1. It is only in structures where the substrate
material is the same as the line material (ns = n1) and the
cover material is the same as the groove material (nc = n2)
that the index term Q is expressed with the sole normalized
parameters and is equal to

Q =
ν0(1 + ν2)(1 + ν2/c)
ν2(1 + ν0)(1 + ν0/c)

(19)

It is worth noting that the case of a grating embedded in a
single material Eq. (18) is a particular case which gives Q =[
ν0(1 + ν2)2] /

[
ν2(1 + ν0)2].

Such single structure is however not general enough since
very often the corrugation of the grating is made in a high
index layer deposited on a low index substrate [17].
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In order to maintain the generality of the present analysis we
will skip the Q index term in the condition Eq. (18) and re-
strict the balance condition as given by the sole field overlap
term. We will see in concrete examples that the effect of this
approximation is small.

The search for the triplet values which are solution of the two-
condition problem is made as follows: a first matrix is created
which contains all possible triplets (c, D, p). Then each step
of the process consists in filtering the triplets as sketched in
Figure 2.

Matrix 1

Matrix 2

Matrix 3

Calculation of the wide
tolerance condition

Calculation of the balanced
mode amplitude

condition

Eq. (3) = 0
contains all

(c, D, p) triplets

Eq. (10)=0

Eq. (10) =0
rejected
triplets

Eq. (18) =0
rejected
triplets

Eq. (18)=0

contains the 
solution triplets

FIG. 2 Search procedure for duty cycle tolerant and balanced two-mode grating inter-

ferometers.

5 SCREENING OF THE STRUCTURAL
PARAMETERS FOR TOLERANT HIGH
CONTRAST INTERFERENCE

The most appropriate representation of the normalized struc-
tural (c, D, p) parameters satisfying both conditions Eqs. (10)
and (18) is in the form of an array. Figure 3 represents the re-
sult of a screening with a rather scarce mesh of c, D and p
values. It is worth pointing out that Figure 3 is a universal
result giving in a normalized form all possible grating struc-
tures permitting high contrast interference effects in the trans-
mission medium and large tolerance on the corrugation duty
cycle.

A random sampling of the large set of (c, D, p) parameters
was made to check on whether these parameters do lead to
functional structures exhibiting the desired properties. The
functional structure is a binary phase mask whose corrugation
is made in a high index film deposited onto a fused quartz
substrate with air cover. Usual phase masks intended for fi-
bre Bragg gratings have a period about 4 times larger than the
exposure wavelength and are a simple binary corrugation in
the fused quartz substrate. Under such condition, the proper
choice of the duty cycle and depth of the corrugation leads
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FIG. 3 3D distribution of the normalized (c, D, p) parameters defining a line/space

tolerant and balanced two mode interferometer. In light gray: projection of the 3D

graph in the (c, D) plane.
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x
y

zSiO2

r

n1 n
=
1

2

Λ

FIG. 4 Short period phase mask with corrugation in a high index layer on silica for

tolerant extinction of the 0th transmitted order.

to an extinction of the unwanted 0th diffraction order. In cases
where the period and exposure wavelength are of the same or-
der, a standard fused quartz corrugation can not cancel the 0th

transmitted order. A corrugation in a high index layer can [17],
and this is the optical function on which the structures con-
tained in the chart of Figure 3 will be tested as illustrated in
Figure 4.

The substrate is fused quartz and the cover is air (n2 = 1). The
dimensionless normalized parameters have been converted
to actual optogeometrical parameters with λ = 700 nm and
n2 = 1. These parameters are given as inputs to an exact vec-
torial code calculating the diffraction efficiencies. The objec-
tive function assigned to the code is the cancellation of the
0th transmitted order in air. It is found that all tested (c, D, p)
parameters do lead to the extinction of the 0th transmitted or-
der and to a maximum of the +1st and −1st transmitted or-
ders. It is remarkable that the 0th order extinction is actually
very tolerant on the duty cycle. This property was further ex-
plored and all tested cases have exhibited a quite large tol-
erance width on the duty cycle D for a 0th transmitted order
power smaller than a prescribed threshold. As an example,
Figure 5 represents the 0th transmitted order power as well as
the first transmitted diffracted order versus the duty cycle D
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in the structure analysed in [17]: a corrugated high index layer
of LPCVD Si3N4 which is transparent at 325 nm wavelength
(n1 = 2.12), a period of 400 nm on a fused quartz substrate.
The corresponding triplet (c, D, p) is (0.47, 0.4, 2.6) and ap-
pears as solution in the final matrix (see Figure 3). Figure 5
shows that the optimised structure exhibits a flat of the 0th or-
der below 1% over a domain of D between 0.38 and 0.43. The
0th order actually remains acceptably small (less than 2%) over
a significantly wider range, especially at the side of narrow
high index wall widths. Technologically, a tolerance between
about 140 and 175 nm on the width of the silicon nitride walls
in a grating of 400 nm period is quite comfortable and permits
the use of interference lithography instead of electron beam
patterning.

 

±1   orderst

 0   orderth

150 160 170 180
0
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FIG. 5 Diffraction efficiency of the 0th and 1st orders versus the width of the high index

wall.

The 3D chart of Figure 3 teaches that all structures allowing
the cancellation of the 0th transmitted order have a duty cycle
D smaller than 0.45. The effective index and field dependences
on the duty cycle when D is larger than 0.5 become sharper,
especially for the TE2 mode whose electric field distribution
changes significantly upon a variation of D. There are three
clouds of possible operation points (c, D, p) in the chart. Two
clouds correspond to a particularly small duty cycle of about
0.25 and to high and small index contrast (c = 0.38 and 0.64
respectively). In the small duty cycle and large index contrast
cloud and in the small duty cycle and low index contrast cloud
a variation of D does not impose strong variation of the modal
field and of the effective index of the TE0 and TE2 modes as the
boundaries are far from each other. The main cloud encom-
passes points corresponding to a larger duty cycle. There are
a large number of structures which enable a cancellation of the
0th transmitted order between 0.34 and 0.43 and the index con-
trast is practically unlimited except at the high contrast side.
These 3 zones correspond to different variation domains of p.
The main cloud and the duty cycle and large index contrast
cloud correspond to the lower p values (2.24 < p < 3.49) and
the last one to large normalized periods (4.20 < p < 5.02).

6 CONCLUSION

The normalized analysis of a phase mask structure of period
of the order of the wavelength, whose binary corrugation is
fabricated in a high index layer deposited on a low index sub-
strate, operating with the TE polarization under normal inci-

dence can be designed with a wide choice of possible index
contrasts and a not too restricted choice of duty cycles below
0.43. This means that the variety of high index layer materials
that can be used is only limited by their transparency at the ex-
posure wavelength. The two conditions leading to a destruc-
tive interference of the 0th order transmission (local indepen-
dence of the effective index difference on the duty cycle and
equality of the modal field overlap) have been expressed an-
alytically and permit to express them in a universal 3D chart
containing all possible solutions. A remarkable characteristics
of the operation points identified is that the condition for zero
0th transmitted order is very little dependent on the duty cy-
cle: not only the derivative of the effective index difference
cancels, but it does so over a very wide range of D which eases
considerably the fabrication conditions of the needed short
period binary gratings. This means, in particular, that such
phase masks of wavelength scale period do not have to be
fabricated by electron beam pattern generators, but mask pho-
tolithography and even interferogram projection can be used,
thanks to the large tolerance obtained by the present analysis.
The reason for such wide tolerance may be due to the two con-
ditions (effective index difference and equality of mode cou-
pling) being somehow related. Further work is needed to elu-
cidate this issue.
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