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A new method of design for the phase-matching in waveguides is suggested. The approach is based on utilizing the concept of the pene-
tration depth of light into the waveguide walls. The lateral components of wavevectors are employed to adjust the phase-matching con-
dition in the propagation direction. The method is demonstrated in two systems: one using single and the other using double photonic-

crystal mirrors. [DOI: 10.2971/j€05.2011.11018]
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1 INTRODUCTION

Non-linear optics is a very important sector of optics and
physics. Generally, various non-linear effects are based on
two main cornerstones. The first one, of course, is the pres-
ence of a non-linear material capable of mixing different fre-
quencies. However, it is likewise important to fulfill the
phase-matching condition, otherwise, the output is usually
close to zero [1]. This condition is simply the conservation of
the photon's momentum (wavevector) along with its fre-
quency.

Among the most known methods to achieve phase-matching
is the usage of birefringence to compensate for material dis-
persion [2, 3]. Another technique [1], [4]-[6], called quasi-
phase-matching, employs periodically modulated media
which adds its reciprocal lattice vector to the conservation of
momentum. In waveguides and optical fibers, the modal
(waveguide) dispersion has also been used [7]-[18] (see also
[19]), along with self-phase modulation (see [19]) and Ceren-
kov phase-matching [20]. However, the analysis, if done, was
numerical. Usually, the dependence of the phase-mismatch
on the frequency or the waveguide width was calculated.

In this work, we suggest to design the waveguide by making
different effective widths for different waves. The concept of
a properly defined penetration depth is then very useful. It
yields a clearer interpretation of the underlying physics and
may simplify the consideration of phase-matching in wave-
guides considerably. For instance, we notice that the phase-
matching itself may actually not depend on the width of the
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waveguide. The latter must be adjusted only to confine all
the waves inside.

To be specific, we focus on 1D photonic crystal (multilayer)
waveguides. Two photonic crystal structures are suggested
for phase-matching: one using single-crystal and the other
using double-crystal mirrors. As a numerical example ac-
counting for both waveguide and material dispersion, we
consider a ZnS/SiO2 system. ZnS can be used for second har-
monic generation [21, 22], while ZnS/5i02 multilayer films
have been fabricated [23].

2 THE MAIN IDEA

The phase-matching condition generally follows from the
translational invariance of the medium. In a waveguide,
translational invariance holds only in the propagation direc-
tion, let us call it x. In order to illustrate the idea in the sim-
plest case, let us consider the second harmonic generation.
The phase-matching equations then are

2k1,x = k2,x >

20, = w,.

1)

The lateral components of the photon momentum are not
conserved but instead, have to fulfill the confinement condi-
tions. In this work we exploit these lateral components to
match between the two Egs. (1).

In a simple metallic waveguide the confinement conditions
would be
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FIG. 1 Schematic explanation of the penetration depth concept in a generic wave-
guide. The field profile is shown as a function of the transverse coordinate z. The
core has a width d and is located between z = -d/2 and z = d/2. The cladding is at

z < -df2 and z > d/2. The penetration depth is denoted as d*.
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where d; = d, is the width of the waveguide and m is the
mode number. It is easy to see that Eqs. (1) and (2) can be
simultaneously satisfied only in the absence of dispersion
(provided m, = 2m; and d, = d,). Our main idea is to employ
the penetration of the waves into the walls of the waveguide
in order to make the effective widths of the waveguide
different for various waves, i.e. d; # d,. Hereafter it is shown
how to realize this concept using two configurations of pho-
tonic crystals (PhCs).

3 PHASE MATCHING USING A SINGLE PHOTONIC
CRYSTAL

In this section we consider a slab waveguide constituted by
two identical multilayer mirrors (1D PhCs). When the fre-
quency is in the forbidden band of the crystals, the light still
penetrates into the mirrors though its amplitude exponen-
tially decreases with the distance from the surface. The con-
cept of penetration depth is illustrated in Figure 1.

The field profile is cosine or sine in the core of the waveguide
(between z = -d/2 and z = d/2). Importantly, it does not vanish
at the core boundary. In the cladding (z <-d/2 or z > d/2) the
field decays exponentially. We call "penetration depth" the
distance between the first "would be" zero of the cosine (or
sine) and the real core boundary (d* in the figure). The field
inside the core is equivalent to that of the metallic waveguide
of a larger width: d,p)= d + df,. Our definition of penetration
depth is different from the usual one (the length of the field
decay into the cladding). However, it is more relevant for
phase-matching and it is still connected to the penetration
into the walls. The penetration depth is clearly related to the
phase of refraction.

We use the transfer matrix method [24, 25] to calculate the
field profile and then determine the penetration depth into a
photonic crystal mirror. In Figure 2 it is shown as a function
of the wavevector and the frequency.

Contrary to the intuition drawn from the simplified picture
in Figure 1, the penetration depth can be negative. The field
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FIG. 2 The penetration depth of light into a PhC mirror (in units of the PhC lattice

constant (2)) is shown by different colors as function of the dimensionless lateral
wavevector R, - 2A/2z (x-axis) and the dimensionless frequency w - A/2ac (y-axis).

Penetration depth makes sense only in the bandgap regions of the PhC and within
the incident light cone. The rest of the plot is left blank. The PhC is made of alternat-
ing layers of Si0, (with refractive indexes n(1064 nm) = 1.45, n(532 nm) = 1.46) and
ZnS (with refractive indexes n(1064 nm) = 2.29, n(532 nm) = 2.40). The layer thick-

nesses are 0.542 A and 0.458 A.

profile inside the mirror is oscillating with an exponentially
decaying envelope. This allows the derivative to be continu-
ous even though the absolute value of the function inside the
core is increasing as it approaches the boundary.

In the present configuration, the formulas (2) can be re-
written as

—d+2d"(a.k,,), i—mZ:dJer*(a)z,kzix) 3)

1,z 2,2

m,

where d'(w, k) is the penetration depth and d is the real
width of the waveguide. It is useful to substitute Egs. (1) into
Egs. (3) and take the difference between the later ones. The
resulting equation then does not contain d:

(4)
mZ
z T 42 =d"(a.k ) -d" 20,2k )
\/nZ(wl)f—;—kfx \/nz(ZwI)f—;—kﬁx

Where n(w) is the refractive index within the waveguide. Eq.
(4) must be solved for w; and k. The right-hand and the left-
hand sides of this equation are shown in Figure 3 as a func-
tion of w, for a particular R, (for m; =1 and m, =1,2,3).

Remarkably, the right-hand side is nearly constant inside
every bandgap. The expression on the left-hand side diverg-
es at w; — cRy/n(wy. and vanishes at large ;. So it spans the
whole range (0, «°) when w; changes; for m, > 2m, it can also
be negative. Since R;, can be adjusted to find an intersection
of the curves, a solution of Eq. (4) can always be found. It can
be further seen that a solution exists for any desired mode
number m,. In the example displayed in Figure 3, we chose
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FIG. 3 Graphical solution of Eq. (4). The right-hand and the left-hand sides of the
equation are plotted versus the dimensionless frequency w, - A/2zc. The right-hand
side is shown in black and only when both w, and w, = 2w, are within the bandgaps
of the photonic crystal. The left-hand side is drawn in blue (for m, = 2m, — 1 = 1),
green (for m, = 2m, = 2) and red (for m, = 2m, + 1 = 3).

The wavevector is k,, = 0.55 - 277/ A. The left-hand side diverges at w, — cRy/n(w,).

to match between the modes m; =1 and m, = 3. Interestingly,
the phase-matching has been achieved while the width of the
waveguide d is not yet determined. It should now be chosen
using one of the Egs. (3). This means that the phase-matching
is essentially a function of the material (the walls). The field
profiles of the waves phase-matched using Figure 3 are
shown in Figure 4.

4 PHASE MATCHING USING A DOUBLE
PHOTONIC CRYSTAL

Phase-matching can be realized in a conceptually simpler
way if two PhCs are involved. Indeed, every wave can be
confined by an associated PhC, as shown in Figure 5.

Since every crystal confines one wave and is transparent for
the other, the effective widths for the two waves are deter-
mined independently by the inner and the outer crystals. The
thickness of the central region (i.e. between the mirrors) is
chosen to match the standing wave conditions for the inner
wave (second harmonic in Figure 5). Both the central region
and the inner PhC of the mirrors serve as the propagation
medium for the other wave. The number of layers of the in-
ner PhC and the thickness of its outer layer may be adjusted
to fulfill the standing wave conditions for that wave.

regular wave
field profile (a.u.)
o

doubled wave
field profile (a.u.)
o

I

[ttt

FIG. 4 Field profiles (in arbitrary units) of the regular (top) and the doubled (bottom)
waves on the phase-matching conditions. The z-axis is in units of 2, yellow color
denotes ZnS layers, while green stands for Si0,. The parameters are:

Rix = 0.55 - 271/ A, @, = 0.63 - 27C/ 2\, Ry = 2R.x, 0, = 20, d = 0.66 - A. The PhC layer

thicknesses are the same as in Figure 2.
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FIG. 5 Field profiles (in arbitrary units) of the doubled (top) and the regular (bottom)
waves in a double PhC waveguide on the phase-matching conditions. The z-axis is in
units of the lattice constant of the outer crystal (2,), yellow color denotes ZnS layers,
while green stands for Si0,. The parameters are:

Rix = 0.76 - 271/ 1, @, = 0.85 + 27C/ g, Ry = 2Ryx, @, = 2w, d = 0.03 Az. The layer
thicknesses for the outer crystal are 0.842/, and 0.1587,; for the inner one they are
0.674 and 1.62;. The last layer of the inner crystal is adjusted to properly confine

the regular wave, so its thickness is = 0.59/;.
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5 CONCLUSIONS

A new technique for the design of phase-matching in wave-
guides has been proposed. In the present paper, it has been
illustrated in the simplest example of the second harmonic
generation. It can be applied, however, to any other non-
linear process. The method works for any given frequency
and any desired waveguide mode number. Two different
approaches have been shown. The first one (with a single
type of photonic crystal) uses the penetration depth depend-
ence on the parameters of the system. In the second ap-
proach (with double crystal mirrors), it is shown how to ex-
plicitly design the effective widths for every wave. Both ide-
as can be realized also in other waveguides, not only in pho-
tonic crystal ones. For instance, optical fibers and dielectric
waveguides can be handily designed for this purpose. We
notice that the waveguide should be further engineered in
order to increase the modes overlap integral, thus improving
the efficiency of the frequency conversion. However, this is a
subject for a separate work.
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