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We analyze the effect of the fill factor of binary diffraction gratings on the Talbot effect under a scalar approach. We show that the
location of the best-visibility planes changes with the configuration parameters of the grating, that is, the amplitude and phase modulation
and the fill factor. Moreover, different intensity patterns and contrast shapes can be obtained when different configurations are used.
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1 INTRODUCTION

Diffraction gratings are key components in several fields
as astrophysics, chemistry, biology, telecommunications,
photonics engineering or medicine, and in a wide range of
applications such as metrology, telescopes, spectroscopes,
machine-tool, etc. [1]-[3]. Basically, a diffraction grating
consists of a collection of reflecting or transmitting elements,
separated periodically. The behavior of the grating in the far
field is well studied under a wide range of conditions [4]-[6].
In this case, light propagates only at certain directions, known
as diffraction orders. A model based on the Fourier approach
allows us determining the directions of propagation, given
by the well-known grating equation, and the power for each
diffraction order [3], [4]. Since the angular separation of
the diffraction orders strongly depends on the wavelength,
low period diffraction gratings are especially relevant in
spectroscopy, due to its ability to separate a polychromatic
light into a spectrum in the far field [5].

However, in many applications diffraction gratings are used
in Fresnel regime. Then, when the period of the grating is
much longer than the wavelength, a Fresnel propagation
based model is normally used to describe the behavior of
gratings under a scalar approach [7]. Talbot effect rules the
propagation of light: self-images appear at periodic distances
from the grating, which are planes where the amplitude
distribution is that of the field just after the grating. These
planes are placed at fixed distances given by z = I[p?/A,
where p is the period of the grating, A is the wavelength and !
is an integer.
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When gratings are used to periodically modulate the ampli-
tude of the field, such as in optical encoders, a maximum
contrast is normally required [8]. In this sense, we can define
the best visibility planes as the planes, parallel to the grating,
in which the contrast is maximum, as it is defined below. The
location of these best-visibility planes of the intensity patterns
depends on the characteristics of the grating. For example,
for amplitude gratings with a fill factor of 50% of the grating
period this best-visibility planes are placed at Talbot planes
z = Ip?/A. On the other hand, for phase gratings with a fill
factor of 50% of the grating period, the best visibility planes
are placed at distances z = (I + $p?/A) [7].

In a previous work, we have analyzed the self-imaging
contrast of gratings with a mixed amplitude/phase character
and its effects over the contrast under a scalar approach
[9]. Nevertheless, the effect of the fill factor in the fringe
formation in the scalar Fresnel regime has not been yet
in-depth studied, to our knowledge. From the point of view
of gratings manufacture, it is not always possible to fabricate
gratings with a fill factor of exactly 50%, especially when
low periods are used. Sometimes, it results very difficult to
delimit accurately the width of the grating strips.

In the present work, we will analyze the dependence of the
diffracted intensity in the scalar near field with the fill factor
for binary amplitude or phase diffraction gratings. In the first
place, we have performed a numerical analysis based on the
Beam Propagation Method, showing that there exists a strong
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FIG. 1 Mixed amplitude-phase grating scheme with the involved parameters.

dependence between the fill factor of the grating and inten-
sity pattern in the scalar Fresnel regime. After that, we will
obtain simple equations for the intensity and contrast based
on Fresnel approach using only the -1%, 0" and 1% orders.
This approach is based on the fact that they contain more than
80% of the total intensity. Under this approach, we have found
that the location of the best-visibility planes is not constant for
phase gratings, but it varies in terms of the fill factor. Never-
theless, this approach does not explain all the effects we can
find and, therefore, we have also performed an analytical ap-
proach with the orders between -3'¢ and 3. Then, the equa-
tions involved are not so simple, but we obtain a good de-
scription of the fill factor effects in the scalar Fresnel regime.

2 Simulations by means of Beam
Propagation Method

Let us consider a binary grating whose fill factor can take
values between 0% and 100% of the grating period. We de-
scribe with the same formalism both amplitude and phase
gratings (and also mixed amplitude/phase gratings) [9]. The
involved parameters are described in Figure 1. A plane wave
with wavelength A illuminates a binary grating with period
p and fill factor. The parameters a and b represent the maxi-
mum and minimum value of the amplitude modulation, and
the phase retardation produced by phase gratings is
6 = 2mth(n — 1) /A, where n is the refractive index of the grat-
ing and £ is the height of the strips. Thus, for the case of ideal
amplitude gratingsa = 1, b = 0, and § = 0 ; and for phase
gratings a = 1, b = 1 and delay ¢. The grating is defined along
x-axis, and the beam light propagates along z-axis. We con-
sider that the period p is much longer than the wavelength A.
Then, a scalar approach on the paraxial domain is valid.

In the first place, we have developed numerical simulations
based on the Beam Propagation Method (BPM), a numerical
method for the simulation of light propagation under a scalar
approach taking into account a refractive index map [10].
Originally, it was proposed for the simulation of waveguides
with variable refractive index [11], but it is also successfully
used for the simulation of gratings [12], liquid crystal devices

[13] and, in general, photonics devices with complex analyt-
ical description [14]. In our case, the algorithm consists of
a Fourier-Transform-based Fresnel propagator, considering
light under paraxial and scalar domain. Usually, Berenguers
Perfectly Matched Layers (PML) approach is used to avoid
reflections at the border of the computation window [15], [16].
Instead, we prefer to use a super-Gaussian absorbing profile
defined along x and y directions, obtaining a non-absorbing
flat zone in the central propagation area, and high-absorbing
zones at the borders of the propagation window. Then, the
amplitude at the borders is avoided and, consequently, the
spurious boundaries reflections are also avoided.

For the simulations, we use two steps. First, we propagate the
illumination field (a plane wave with normalized amplitude)
through a diffracting grating with the proper parameters: am-
plitude, phase, period, and fill factor. The resulting field, at
the end of the grating, is taken as illumination field for the
last propagation, along vacuum space. Then, the origin at the
z-axis is located at the end of the grating. In this way, we ob-
tain different resolutions for the propagation through the grat-
ing (with normally a small depth) and for the propagation
through free space. We calculate the intensity in each point
of the space using [(x,z) = U(x,z)U*(x,z) , where U(x,z)
and U*(x,z) denote the field and the conjugated field for each
point of the space provided by BPM. To analyze the visibility
of the fringes produced by the grating in the near field we use
the definition of contrast along z-axis

Imax - Imin

Contrast(z) = T
min

, @

where Iy is the intensity at x = 0 for every value of z,
Imax = I(x = 0,z), and I, is the intensity at x = p/2 for
every value of z, I,;;, = I(x = p/2,z). Due this definition,
where the absolute value has been used, odd and even self-
images are equivalent and we do not consider the inversion
of contrast (in other words, the contrast is always positive).

In Figure 2 we have plotted the diffracted intensity in the
near field, and also the contrast obtained with Eq. 1 for BPM
simulations of an amplitude grating (¢ =1, b = 0, § = 0) with
p = 40 um for the cases of « = 30 %, & = 50 %, and & = 70
%, illuminated with A = 632.8 nm. For all the simulations
performed in this work we have used 2048 pixels along
the direction of propagation, and we have propagated until
4z7, where zr = p?/A = 2.53 um is known as the Talbot
distance. Thus, the distance of propagation is 10.12 uym. At
the same time, the transversal width is 1 mm of with the same
number of pixels. As it can be observed, the location of the
best-visibility planes is the same for the three cases. Also, we
can see that when a grating with narrow transparent strips
along x-axis (corresponding to a low fill factor) is used, the
contrast along z-axis has the form wide maxima peaks at the
location of the Talbot planes.

On the contrary, when a grating with wide transparent strips
(corresponding to a high fill factor) is used, the contrast along
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FIG. 2 Intensity (logarithmic scale) and contrast obtained by means of BPM simulations
for a grating with p = 40 um, a = 1, b = o and § = o, illuminated with A = 632.8
nm, for different values of &; a) and b) & = 30 % of the grating period; ¢) and d)

« = 50 % of the grating period; €) and f) @ = 70 % of the grating period.

z-axis is formed by narrow maxima peaks, separated each
other by a Talbot distance, over an almost-stable value (but
a rippled function). A stable high value of the contrast over
a wide region along z-axis is interesting for applications
in which self-images are used, increasing the mechanical
positioning tolerances.

In order to reach a more generalized point of view, let us
compare an amplitude (@ = 1,b = 0,6 = 0) and a phase
grating (1 = 1,b = 1,6 = n/2), both with period
p = 40 ym and illuminated with A = 632.8 nm, over a wide
range of values of the fill factor a. The results are shown
in Figure 3. The values of the contrast are now collected at
the same figure for each kind of grating, where the vertical
axis represent the value of a. These plots are normalized
to its maximum value. It should be mentioned that these
figures show the contrast of the intensity patterns, and not
the absolute intensities. In terms of global intensity amount,
for a phase grating there is no dependence with «, whereas
for an amplitude grating the amount of intensity that pass

FIG. 3 Dependence of contrast obtained using BPM with « (in % of the grating period)
for a grating with p = 4o um,anda)a=1,b=o0andd =o0;andb)a=1,b=1,

6 = 1t/2, illuminated with A = 632.8 nm.

through the grating depends strongly with the fill factor.

It should be here noted that, since we have used a scalar
propagator, the range of validity of our calculations are
limited to the region in which the typical feature size is longer
than 4A. Since the wavelength used is A = 632.8 nm, the
minimum strip width that can be considered is about 2 ym,
corresponding to a fill factor of 2 ym about 6%. Thus, the
range of validity of these simulations is between 6% and 94%.

The dependence with « is notorious and different for ampli-
tude and phase gratings. For an amplitude grating the width
of the best-visibility planes along z-axis tends to increase with
«. The location of the maximum values, as we have seen, re-
mains the same for every value of a. On the contrary, the lo-
cation of this maxima for a phase grating moves along a Tal-
bot period when a changes, whereas the shape of the best-
visibility planes remains almost constant along z-axis. Up to
our knowledge, this behavior (specially, the change of the lo-
cation of the best-visibility planes when the fill factor changes)
has not been yet explained. Therefore, we find necessary an
analytical study of this phenomenology.

3 Theoretical Model

Since diffraction gratings are periodical elements, they can be
described as a series expansion. According to Thin Element
Approximation (TEA) [17], the transmittance of the grating is
given by

HE) = ;Cl exp(iqlg) 2)

where g = 271/ p and ¢; are the Fourier coefficients of the grat-
ing, defined as [9]

co=u (ue*i‘s — b) +0b,

q=u (ae’i‘s - b) sinc (7tla),

®)

The efficiency of each order of the grating is determined by
these coefficients, according to abs (clc;‘) (where ¢/ means
complex conjugated). A scalar treatment of the diffraction is
possible when the period of the grating is much longer than
the wavelength of the incident beam. In our case, attending to
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optical encoders, the period of the common gratings are in the
range of 20 - 40 ym and the wavelength in the visible region,
so the scalar approach is possible. It should be noticed that
this scalar treatment will be valid only if the wide of the grat-
ing strips are much longer than the wavelength, as in the case
of the BPM simulations. In other words, our development loss
validity when the fill factor is lower than 6% or higher than
94% (taking into account periods of 40 ym and A = 632.8 nm).
The diffracted field at a distance z from the grating is then de-
scribed using the Fresnel approach,

uxz) = 5 [ur@yexp iy (- 22|t @

where U (&) is the illumination wave. When a monochromatic
plane wave Uy(&) = Ap illuminates the diffraction grating,
the diffracted field at a distance z from the grating results

U(x,z) = Ao )_cexp (igxl) exp (i?TIZZ/ZT> . (5)
7

At distances multiples of zr, self-images of the grating are
produced. The normalized intensity of the diffracted field,
I(x,2) = U(x,2)U*(x,2) / | Ag|?, results in

f(z,x) = Y. Y eich exp [igx(I —1')] exp [in(lz - 1’2)2] . (6)
v

where Z = z/z7 and * denotes complex conjugated. The main
consequence of this equation is that maxima of intensity ap-
pear at certain distances after the grating, separated by zr,
as we have seen in the simulations. In general, these Fourier
coefficients are complex variables, and they are written as
c; = Crexp(if;), being C; their modulus and f; their phase.
Then Eq. 6 can be rewritten as

I(z,x) =YY" CiCpexp [igx (1 - 1)]
T T )
X exp [ir( (l2 — l/2> Z+i (B — ﬁl’)} .

The accuracy of this analytical development depends on the
number of orders taken into account. On the other hand, a
high number of orders implies a high complexity in the final
expressions. For a rough estimation of the intensity distribu-
tion at the self-images, we can use at a first stage only the -
1%t, 0t and 1%t orders. In Figure 4, the cumulative efficiency of
the grating (using the Fourier coefficients in Eq. 7), taking into
account different number of orders, is plotted against the fill
factor for an amplitude grating and for a phase grating. In the
case of an amplitude grating with 2 = 1 and b = 0 the total
efficiency should be linear with « (since the total energy that
can pass through the grating depends linearly with «). On the
other hand, for a phase grating the total efficiency should be
always equal to unity. As it can be observed, the -1%¢, 0" and
1%t orders carry more than 80 % of the energy for both kinds of
gratings. This approach has been successfully used to deter-
mine the behavior of diffraction gratings under a scalar Fres-
nel approach for a wide range of circumstances [19], [20].
When only -1%t, 0 and 1%t orders are considered, a simple
equation for the intensity is obtained, and Eq. 7 simplifies to

1(x,2z) = C3 +4C2 cos (gx)*

8
+4CyCq cos (gx) cos (2 + Bo — B1) - ®

1
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FIG. 5 Dependence of contrast (absolute value) with using up to the -1%t, ot and 1t
orders for a) a pure amplitude grating with a = 1, b = 0 and 6 = 0; and b) a phase

grating witha=1,b=1,0 =7/ 2.

Thus, the contrast results in

4CyCq

Contrasty(z) = m

|cos (MZ+Bo—P1)[.  9)
For the case of an amplitude grating, the Fourier coefficients
are ¢ = &, ¢ = c_1 = asinc(7ta) then the coefficients
Bo = B1 = 0 are null. However, this is not the case for
phase gratings. For example, the Fourier coefficients for a 7r/2
phase grating are ¢g = v2a? — 2 + Lexp [—ia/(1 — a)], and
¢ = av/2sinc (7ra) exp (371i/4). Consequently, there appears
a shift in the location of the self-images which depends on the
fill factor according to

—a 37
Po=Pl=1_3 7
The intensity distribution in the near field for these two
particular cases (the amplitude grating and the 77/2 phase
grating) is shown in Figure 5. Attending to these figures,
we notice that Eq. 9 explains the location of the maxima
of contrast: a change in the location of the self-images is
appreciable for the phase grating, but not for the amplitude
grating. Nevertheless, a visual comparison between Figure
3 and Figure 5 shows that Eq. 9 does not predict completely
the behavior of the grating in the Fresnel regime, especially
in terms of contrast pattern shape. These effects can be
attributed to the energy carried by upper orders, shown in
Figure 4. When the fill factor is higher or lower than 50% of
the grating period, the upper orders (+ 2nd 4 3rd) peach a
higher percentage in the energetic distribution of Figure 4.

(10)

In order to evaluate the number of orders needed, we solve
numerically Eq. 7 for amplitude gratings, since the effect is
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visually more obvious for this case, taking into account differ-
ent number of orders. The results are shown in Figure 6. It is
clear that the inclusion of the 4 2% orders is enough to pre-
dict the dependence between the fill factor and best-visibility
planes width. For a higher number of orders, rippled signals
with spatial periodicity lower than z appear over the funda-
mental contrast signal with periodicity zr. These higher fre-
quencies are more visible for high fill factors (over 80%) and
low fill factors (under 20%). Therefore, very narrow peaks on
the contrast profiles can be obtained using high or low fill fac-
tors. Moreover, the width of the best-visibility planes tends,
when the number of orders involved increases, to a linear de-
pendence with «. This dependence is shown with dashed lines
over plots of Figure 6. Assuming that self-images width, W; ,
is the distance between points at z-axis where the contrast fall
down to half-height, we can write,

(11)

which can be a useful expression for diffraction grating
design. For some applications using self-imaging effects, it is
important to obtain wide areas with high contrast along z—
axis, as in optical encoders. Attending to the plots in Figure
6, we notice that using up to + 3 orders we can obtain a
description of both effects: the secondary peaks from extreme
fill factors, and the almost-linearly dependence between
W; and a. The inclusion of a higher number of orders can
complicate the analytical development.

Developing Eq. 7 up to + 3™ orders, and taking into account
that C; = C_; (since sinc is an even function), then the inten-
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FIG. 7 Analytical contrast obtained taking into account up to the + 3™ orders for
different values of «, for a grating with p = 40 um ,and a) a pure amplitude grating
with a = 1, b = 0 and 4 = o; and b) a phase grating with a = 1, b=1, § = 71/2;

illuminated with 632.8 nm.

sity results

1(z,x) ~ C3 4 4C2 cos (gx)* 4 4C5 cos (2gx)?
+4C3 cos (3gx)?
+4CyCq cos (gx) cos (112 — Bo + B1)
+4CyC; cos (2gx) cos (472 — Bo + B2)
+4CyC;3 cos (3qx) cos (972 — By + B3)

12
+8C1C2 cos (gx) cos (2qx) cos (3712 — p1 + p2) "
+8C1C3 cos (24x)* [2cos (24x) — 1]

x cos (872 — B1 + B3)
+4C2C; [cos (4x) + cos (54x)]
x cos (5712 — B + B3),
and the contrast results in
4CyCq cos (12 — Bo + B1)
+8C1Cy cos (372 — B1 + B2)
+8C,C5 cos (572 — Ba + B3)
+4CyCsz cos (9712 — Bo + B1) (13)

Contrasty3(z) =

C3 +4C? +4C% +4C2
+4CyC; cos (472 — Bo + B2)
+4C1C5 cos (872 — B1 + B3).

The numerical solutions of Eq. 13 for a pure amplitude
grating and for a 7r/2 phase grating (with the proper Fourier
coefficients) has been plotted in Figure 7a and Figure 7b
respectively, for different values of z and «. The concordance
with the BPM simulations is clear. We also note that the
central region (between 20% and 70%) in both cases lead to a
stable region, with no secondary peaks. For the case of optical
encoding, the most attractive case should be an amplitude
grating rounding « = 70 %, since the width of the maximum
peaks are enlarged.

We can take some heuristic considerations from Eq. 13. Some
cosine functions appear with different frequencies, zt, z7/3,
zr/5, and zr/9. The arguments of the Fourier coefficients
of the grating, B;, introduce a displacement in the maxima
of each cosine function. For the case of an amplitude grat-
ing, the Fourier coefficients are cp = a, c; = asinc (7ta),
cp = asinc (27tw) and ¢3 = asinc (37a), and consequently the
arguments 3; are null. Therefore there is not displacement of
the maxima with a.
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Disregarding the displacement introduced by each B;, the nu-
merator in Eq. 13 is a sum of cosine functions with frequencies
zt,271/3,21/5, and z7 /9. The absence of even spatial frequen-
cies in the numerator ensures a minimum of contrast at mul-
tiplies of zr/2 and a maximum at multiplies of zr. The final
contrast can be understood as a sum of cosines with differ-
ent weights. Depending on the factors multiplying each co-
sine function, the smaller frequencies can be more visible than
the frequency zr, as occurs for high and low a. Under some
circumstances, the sum of cosine functions produces an en-
larging of W with a.

For a phase grating the 0" Fourier coefficients is

co= V202 —20+1lexp|[—ai/(1—a)]

and therefore By introduces a displacement in the maxima
with a linear dependence with a.The upper coefficients are

c1 = av/2sinc () exp [37ti/4],
¢y = a\/2sinc (27ta) exp [37ti /4], and
c3 = av/2sinc (37ta) exp [371i /4] .

Thus, these upper coefficients are not necessary to explain the
linear dependence of the maxima location with «, but they
introduce some higher spatial frequencies in the self-imaging
process. It should be also mentioned that we have not con-
sidered the different efficiency of an amplitude grating and a
phase grating, shown in Figure 4.

We can extract some conclusions. For lower values of «,
the best-visibility planes are almost peaks centered on the
position of the Talbot planes. Secondary maxima appear for
the low and high values of x. However, for the study of these
extreme regions a vectorial approach should be necessary.
The dependence of the shape can be understood as a sum of
cosine functions with odd spatial frequencies. Nevertheless,
the location of the maxima of contrast does not change. On
the contrary, for the 71/2 phase grating case shown in Figure
2(b) we can appreciate the strong dependence of the location
of the maximum contrast with the fill factor, whereas the
self-images width do not change considerably.

The application of this development results clear when we
think of the tolerances analysis of systems with diffraction
gratings. In this work we have seen that deviation from fill fac-
tor of 50% can involve changes in the maxima location and in
the contrast shape, which should be taken into account. From
a more generalized point of view, the proper election of the
parameters involved in Eq. 13 can be used for the optimiza-
tion of the contrast shape. For example, it could be possible to
maximize the maxima of contrast width, which result really
interesting for optical encoders.

4 Conclusions

We have studied the effect of the fill factor over the near
field of diffraction gratings under a scalar approach. We have
found, by means of BPM simulations, that the location of the

best-visibility planes do not change for pure amplitude grat-
ing when the fill factor changes, whereas for phase gratings
the location of best visibility planes changes linearly with
the fill factor. Moreover, for amplitude gratings the width
of the maxima of contrast tends to a linear dependence with «.

An analytical development under a scalar approach consid-
ering the -1%, 0" and 1%t orders can predict the displacement
of the best-visibility planes. Nevertheless, for a proper de-
scription of the effects, it is necessary to develop up to the 3™
orders.

Then, we can describe the dependence of the width and shape
of the best-visibility planes with a for amplitude gratings. For
low and high fill factor, new secondary maxima appear be-
tween consecutive best-visibility planes. For the case of phase
gratings, there is a displacement of the best-visibility, and sec-
ondary maxima appear again for low and high fill factor val-
ues. This final result can be understood as the competence be-
tween several cosine functions with different spatial frequen-
cies, whose weights change with a. The expression found can
be used to improve the tolerances of systems based on Talbot
effect.
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