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Error correction of a phase-only computer-generated
hologram for an aspheric surface
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When applying phase-only computer-generated hologram (CGH) as a standard model of optical measurement in computer-generated
holography for aspheric surface testing, it has the advantage of simplifying optical path configuration and improving the diffraction
efficiency of the incoming light. However, errors always exists during the encoding process of fabricating multiphase level CGHs and this
kind of errors will be amplified level by level in the measurement. According to the analysis of the encoding error, the error of CGH increases
linearly when its quantified period increases. For example, if the quantified period is 32, the maximum of encoding error is 16.46 which can
lead wave-front aberration 0.085λ of a secondary parabolic surface with 512×512 sampling pixels. In this article, an optimization method
based on deviation of minimum boundary value has been used to eliminate the encoding error of CGH. In the experiment, we use a liquid
crystal spatial light modulator to generate CGHs and measure residuals of reconstructed wave-front of a secondary parabolic surface. The
measurement results show that average decrease of the RMS values of the residuals is 0.07λ when their periods range from 3 to 6, which
indicates the optimization method is effective.
[DOI: http://dx.doi.org/10.2971/jeos.2014.14039]
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1 INTRODUCTION

In the aspheric surface testing by computer-generated holog-
raphy, computer-generated hologram (CGH) is usually used
as a standard model to reconstruct the ideal wave-front, and
further measuring the error existed on the aspheric surface.
Compared with optical holography, computer-generated
holography does not need a real standard aspheric sur-
face as reference object during the measurement. Instead,
computer-generated holography utilizes the mathematic
model of the tested aspheric surface to generate its CGH cor-
respondingly and prints the pattern onto a film or generates
the pattern by optical devices such as liquid crystal spatial
light modulator. This advantage makes computer-generated
holography become a potential application with an attractive
prospect [1]−[5]. The introduction of phase-only CGH in
optical testing simplifies the optical path configuration and
improves the diffraction efficiency [6]−[8]. However, during
the encoding of CGH especially for CGH with multiphase
levels, errors might occur through the process which cause
phase mismatch in the generated hologram. Moreover, the
error can be passed and amplified in measurement optical
path and such accumulated error will further reduce the
accuracy of reconstructed wave-front. However, the current

research still focuses on how to correct or reduce alignment
error of optical path, optical system error and wave-front
reconstruction error exist in aspheric testing [9]−[12], but
there is few research discussing encoding error.

In this article, we have studied how analyze encoding error
generated during fabricating CGHs and correct this error. In
the experimental part, a liquid crystal spatial light modulator
has been applied to generate CGHs, and encoding errors be-
fore and after correction have been compared and analyzed to
prove the effectiveness of our proposed optimization method.

2 PRINCIPLE OF ENCODING FOR CGH

According to the mathematic expression of the rotationally
symmetric aspheric, its corresponding model W(x, y) can be
expressed as shown below,

W(x, y) =
cS2

1 +
√

1− (L + 1)c2S2

+ A1S4 + A2S6 + · · ·+ AnS2n
(1)

where x, y is the Cartesian coordinate which corresponds to
the bottom projection of any point on the aspheric surface and
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meets the condition S2 = x2 + y2. R0 is the radius of curvature
of the surface and c = 1

R0
. A1, A2, . . . , An are high order as-

pheric coefficients and L is the eccentricity. To get a secondary
aspheric surface let A1, A2, . . . , An = 0, L = −e2.

We adopt phase type CGH-encoding method to process the
holographic encoding for the aspheric surface W(x, y). Firstly,
W(i, j) is obtained by sampling and discretizing W(x, y)
which can be expressed as,

W(i, j)

=
[
W(x, y) · comb

( x
N

)
· comb

( y
N

)
· rect

( x
D

,
y
D

)]
(2)

where i, j = 1, 2, 3 · · ·N and N is the sampling number, D is
the aperture diameter of the aspheric surface. Then, W(i, j)
is quantified modulo 2π to generate a phase map. After am-
plification and rounding, the phase map can be transferred
into a grayscale map whose value ranges from 0 to 255. The
grayscale map is called phase-only computer-generated holo-
gram which is shown below,

WCGH(i, j) = round
[

255 · 1
λh
·mod [W(i, j) · h]2π

]
(3)

Where λ is light wavelength, h is the wave vector and h = 2π
λ .

The principle of phase type CGH-encoding is depicted
in Figure 1.

Based on the knowledge of how a phase-only CGH is en-
coded, it is obvious to see that there exists encoding error dur-
ing sampling, discretization and quantification processes due
to rounding and value amplification, and the error is a kind of
principal error.

3 ANALYSIS AND CORRECTION OF
ERROR

3.1 Analysis of encoding error of CGH

If L in Eq. (1) is set to be -1 a mathematic model W(x, y)
of secondary parabolic surface can be obtained and its CGH
WCGH(i, j) is also generated by expressions (2) and (3). Tak-
ing the CGHs quantified by 16 and 32 periods (Sampling rate
512×512) as our discussing object, we extract the central sec-
tion to observe the grayscale distribution in that profile which
is shown in Figure 2, where Figure 2(a) and Figure 2(b) give
half grayscale distributions of CGHs quantified by 16 and 32
periods respectively. Theoretically, the initial value of each
period should be 0 and the maximum value of each period
should be 255, and the value of the gray scale should increase
linearly from 0 to 255. However, the real situation shows that
nonlinear error exists in each period and distributes randomly.
And the value of the nonlinear error increases when the pe-
riod number gets larger. The analysis of the existed error indi-
cates that there is encoding error in the phase-only CGH. Error
correction can be used to avoid error amplification in aspheric
surface testing and hence enhance the measuring accuracy.

When the sampling number is fixed, for example the sampling
rate is set to be 512×512, the relationship between the RMS
value of encoding error and quantization period is depicted

FIG. 1 Principle of phase type CGH-encoding for a secondary aspheric surface

(a)

(b)

FIG. 2 Half grayscale distributions of CGHs with different quantization periods (Sam-

pling rate 512×512) (a) Grayscale distributions of CGH with 16 periods; (b) Grayscale

distributions of CGH with 32 periods.

in Figure 3. The RMS value of encoding error is defined as,

erms =
1
m

√√√√ m

∑
i=1

m

∑
j=1

[WCGH(i, j)−W0(i, j)]2 (4)

Where W0(i, j) is desired CGH and m is the maximum of sam-
pling numbers. The encoding error of CGH steadily increases
with the grow in quantization period. When the period num-
ber is 32, the maximum rms of encoding error is 16.46 which
will lead wave-front aberration 0.085λ.

3.2 Correct ion of encoding error of CGH

An optimization method based on deviation of minimum
boundary value is adopted to correct the existed error. One-
dimension array B1, B2, · · · , BN which goes through symme-
try center point is extracted from WCGH(i, j). In the one-
dimension array, the minimum boundary value bk of each pe-
riod is extracted. Through solving linear equations, the devi-
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FIG. 3 Error distribution curve of CGH under 512×512 sampling rate.

ation of minimum boundary value of each period zk can be
acquired.

zk = bk − b0 (5)

where b0 is the expectation value of the minimum
grayscale value for one period and k is the period num-
ber k = 1, 2, 3 · · ·C and C is the maximum period number.
The adjustment coefficient βk for zooming in or out grayscale
values of each period in WCGH(i, j) can be obtained by solving
the equation below,

βk =
a0

ak − zk
− b0 (6)

Where ak is the maximum boundary value of each period and
a0 is the expectation value of the maximum grayscale value for
one period. A CGH is composed of a square matrix with some
data ring bands corresponding to quantization periods. The
correction principle is to use βk to correct the data of the k-th
ring band needed to be extracted by the boundary expression.
After every ring band is corrected a new CGH is obtained by
combining the corrected ring bands. The boundary expression
is defined and created, and data Wk(i, j) in each period is ex-
tracted from WCGH(i, j),

Wk(i, j) =
{

WCGH(i, j), λ(k− 1) ≤W(i, j) ≤ λk
0, W(i, j) < λ(k− 1) or W(i, j) > λk

(7)
where λ is the wavelength of the light. The corrected ring band
Rk(i, j) can be obtained by the expression below,

Rk(i, j) = (1 + βk) [Wk(i, j)− zk(i, j)] (8)

Where zk(i, j) is the matrix of the deviation of minimum
boundary value which constituted by zk in the following rule,

zk(i, j) =
{

zk, λ(k− 1) ≤W(i, j) ≤ λk
0, W(i, j) < λ(k− 1) or W(i, j) > λk

(9)

The next step is to accumulate data of each ring band after
adjustment, generating the corrected WCGH1(i, j), which can
be expressed as,

WCGH1(i, j) = round

(
C

∑
k=1

Rk(i, j)

)
(10)

(c)

(d)

FIG. 4 Half grayscale distributions of CGHs with different quantization periods after

correction (Sampling rate 512×512) (a) Grayscale distributions of CGH with 16 periods;

(b) Grayscale distributions of CGH with 32 periods.

Finally, the corrected CGH should be checked by the condition
whether it meets the setting requirement |zk| < z0. If the result
is no, the corrected CGH will be substituted to Eq. (5) to start
the loop from Eqs. (5) to (10). On the contrary, if the result
meets the condition, corrected CGH is acquired.

4 CORRECTION EXPERIMENT OF
ENCODING ERROR

The corrected CGHs quantified by 16 and 32 periods are
shown in Figure 4. Compared with Figure 2, there is almost no
error in CGHs because the minimum and maximum grayscale
values can reach 0 and 255 respectively and the grayscale
value in each periods distributes linearly. It is clear that the
encoding error can be eliminated after the error correction
above. Then the validation experiment is built by using the
phase-only liquid crystal spatial light modulator (LCSLM)
from BNS company to generate CGH and using AK100 Fizeau
interferometer to measure the reconstructed wave-front. Us-
ing LCSLM to reconstruct wave-front of a secondary parabolic
surface by loading the CGH patterns which range from 3 to 6
periods. The theoretical parabolic surface and the CGH quan-
tified by 6 periods are shown in Figure 5. The errors of wave-
fronts reconstructed by the LCSLM before and after correction
of encoding errors of CGH are listed and compared in Table 1.
The RMS value of residual error on the parabolic surface can
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(e)

(f)

FIG. 5 Parabolic surface and its CGH (a) Parabolic surface; (b) CGH of parabolic surface.

periods 3 4 5 6
RMS uncorrected 0.5991 0.7978 0.8296 0.7452

RMS corrected 0.5125 0.7488 0.7232 0.6918

TABLE 1 Residual error of wave-front.

be calculated by expression below,

δrms =
1
m

√√√√ m

∑
i=1

m

∑
j=1

[Pmea(i, j)− P0(i, j)]2 (11)

Where P0(i, j) is ideal wave-front phase, Pmea(i, j) is measured
value and m is the maximum of sampling numbers. The RMS
has experienced an 0.07λ (λ is 632.8 nm) average decrease after
error correction.

There are a few factors that cause the residual error to be
larger than expected. Firstly, the distortion existed in the op-
tical measuring system has not been corrected. Secondly, the
resolution of the phase pattern from the measurement is only
130×130 pixels which is far smaller than the resolution of
512×512 pixels of CGH from LCSLM. In that case, interpo-
lation should be used which might bring error in some extent.
Figure 6 gives the measurement result of CGH quantified by 5
periods. Figure 6(a), 6(b), 6(c) and Figure 6(d), 6(e), 6(f) show
the results before and after error correction respectively (the
sampling rate is set to be 512×512 pixels). Because the aper-
ture of reference mirror in the interferometer is 150 mm and
the working aperture of the LCSLM is 7.68 mm which is far
different from the former’s dimension, plane mirror should be
more facilitated to be used to adjust the optical path. However,
when the quantified period exceeds 6 periods, the parabolic
surface and the reference plane mirror cannot form interfer-
ence pattern properly which limits the setting for the period
number to be under 6 periods. Based on the principle of en-
coding error correction mentioned above, when the period
number is small, the error is small too. Therefore, the improve-
ment after error correction is not significant when the period
is set to be 5 in Figure 6. Facing this limitation, our next plan is
to redesign the optical part to meet the need of setting larger
quantified period.

(g)

(h)

(i)

(j)

(k)

(l)

FIG. 6 Measurement results of encoding error of CGH quantified by 5 periods (a)

Interference fringe of before correction; (b) 3D wave-front; (c) Residual error (d) Inter-

ference fringe of after correction; (e) 3D wave-front; (f) Residual error

5 CONCLUSIONS

In this article, we use phase type CGH-encoding to generate
CGHs for secondary parabolic surface. The analysis of encod-
ing error indicates that the error will increase with the growth
of the quantified period number. For CGH with 512×512 sam-
pling rate, when the period reaches 32 the maximum of encod-
ing error is 16.46 which can lead wave-front aberration 0.085λ.
In order to block the transmission of error in aspheric surface
testing, an optimization method based on deviation of mini-
mum boundary value has been proposed. In the experiment,
LCSLM is loaded CGH with 3,4,5,6 periods to reconstruct sec-
ondary parabolic surface. After correction, RMS value of the
residual error of the parabolic surface meets a 0.07λ average
decrease. The experimental results validates the effectiveness
of our proposed method for encoding error correction. The
combination of CGH encoding and our encoding error correc-
tion method can realize high accuracy aspheric surface test-
ing.
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