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T. Saucedo-Anaya
tsaucedo@fisica.uaz.edu.mx

Unidad Académica de Fı́sica, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina con
Paseo a la Bufa S\N. Col. Centro. C. P. 98000, Zacatecas, Zac. México
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In this paper we present a novel algorithm for phase unwrapping where only a subset of data from the wrapped phase map is used to
reconstruct the unwrapped phase map as a linear combination of radial basis functions (RBF’s). For noisy phase maps this algorithm gives
better results than three reference algorithms based on radial basis functions, Zernike polynomials and path dependent phase unwrapping
strategies.
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1 INTRODUCTION
Interferometric methods are widely used to measure phys-
ical magnitudes such as deformation, stress, temperature,
etc. [1, 2] in a non destructive and non invasive way. These
magnitudes modulate a fringe pattern called interferogram
which contains the information about the related physical
magnitude. Demodulation is necessary to recover the phase
information related to these magnitudes.

Techniques for phase recovery such as Fourier based [3],
phase stepping [4] or regularization [5]−[7], provide a non-
continuous phase wrapped in the interval (−π, π]. This phase
must be unwrapped to obtain the physical magnitudes. It is
common to find phase inconsistencies or noise that can make
the unwrapping process a difficult task. The application of
path dependent algorithms [8] improves the unwrapping pro-
cess but does not always provide proper results, Ghiglia et al.
shows a simple test for path dependence [9]. A robust alter-
native for many cases is the least-squares solution which is
described in matrix form by Hunt [10]. Another robust al-
gorithm to find a solution in the presence of path-integral

phase inconsistencies using the cosine transform is that pro-
posed by Ghiglia and Romero [11]. The methods above men-
tioned require long processing time and are computationally
complex that make them inconvenient for some applications.
When the phase is smooth, the time of processing can be short-
ened by solving the phase unwrapping problem using a linear
combination of local basis functions [12]. Moreover, Arines’
method [13] uses a linear combination of Zernike polynomi-
als to reconstruct any smooth phase map. These polynomials
are utilized in functions with circular domain. In this paper
we propose a regular grid of a linear combination of gaussian
basis functions (RBF’s) applied to unwrap the phase. The algo-
rithm proposed here takes into account part of the phase map,
using only the image pixels forming a regular mesh. This strat-
egy is important to reduce the memory resources and also the
processing time to unwrap the phase map. The weights are
described in a typical matrix formulation allowing the matrix
inversion using direct methods [14].

In this paper we give, in Section 2, the fundamentals of the
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phase unwrapping problem. We describe, in Section 3, our
proposed phase unwrapping technique. In Section 4 some
practical considerations to implement our algorithm are dis-
cussed. Numerical and real experiments are presented in Sec-
tion 5 and finally, in Section 6, we summarize some conclu-
sions.

2 RELATIONSHIP BETWEEN WRAPPED
AND UNWRAPPED PHASES

Defining ϕr and φr the wrapped and the unwrapped phase
respectively, where r = (x, y) is the vector in a discrete grid,
the relationship between these two phases is established by

ϕr =W {φr} = φr + 2πkr (1)

where W represents the wrapping operator and kr a field of
integers such that W {φr} ∈ (−π, π]. The value of ϕr repre-
sents the observed phase (wrapped) and φr the real unknown
phase (unwrapped) to be determined. The discrete phase gra-
dient field, ∇ϕr, is defined as

∇ϕr = (ϕr − ϕs, ϕr − ϕt) (2)

where s = r− (1, 0) and t = r− (0, 1) are contiguous horizon-
tal and vertical sites respectively. We can also define the un-
wrapped discrete gradient field as∇φr = (ϕr − φs, φr − φt). If
the sampling theorem is fulfilled for these two discrete phase
fields, the problem of recovering φr from ϕr can be properly
solved. The sampling theorem establishes that the distance be-
tween two fringes must be more than two pixels (the phase
difference between two fringes is 2π). For phase map, the
sampling theorem is reached if the phase difference between
two pixels is less than π. This is

‖∇φr‖ < π. (3)

If this condition is satisfied, we can establish:

∇φr =W {∇ϕr} = (W {ϕr − ϕs} ,W {ϕr − ϕt}) (4)

W {∇ϕr} can be obtained from the observed field. From this
equation, we see that φr can be achieved by two-dimensional
integration of the vector field W {∇ϕr}. This can be carried
out by using a least-squares approach [15]−[17].

2.1 Test for path independence

Let Φ be a continuous vector field, then Φ has a path-
independent line integral if and only if∮

C∈V
Φ (r) · dr = 0 (5)

Φ is a conservative vector field if there is a scalar function
φ such that Φ = ∇φr, for every piecewise simple closed
curve C in the domain of Φ. Integrating ∇φr around the path
r, s, u, t ∈ V, u = r − (1, 1) (shown in Figure 1) then q is ex-
pressed as,

q =
4

∑
i=1

∆i, (6)

where ∆1 = ϕs − ϕr, ∆2 = ϕu − ϕs, ∆3 = ϕt − ϕu,
∆4 = ϕr − ϕt. When q is zero there are no inconsistencies.

ϕrϕs

ϕu ϕt

rs

u t

∆1

∆2

∆3

∆4

FIG. 1 Closed path r, s, u, t ∈ V used for the path independence test.

3 SAMPLED RADIAL BASIS FUNCTIONS
FOR PHASE UNWRAPPING

Any function can be modeled by a linear combination of ba-
sis functions. Let U = {0 . . . M − 1} ⊂ Z and V = U ×U a
smooth unwrapped phase φ : V 7→ R can be approximated
by a linear combination of N local RBF’s, this is

φr ≈
N

∑
i=1

wiψ (‖r− ri‖) =
N

∑
i=1

wiψ
i
r, (7)

where, r ∈ V, wi ∈ R (i ∈ {1, . . . , N}) are the weights of the N
shifted basis functions ψ (‖r− ri‖) = ψi

r and ri ∈ R2 are the
central point of the RBF’s. Let Uh ⊂ U and Uv ⊂ U then, we
take

|Uh|, |Uv| ≤ M, (8)

to express the horizontal points Vh = Uh × U and vertical
points Vv = U ×Uv of the grid used to recover the phase.

The horizontal and vertical finite differences ∆h
s φs and ∆v

t φt
are given by

∆h
s φs = φs+ι − φs

∆v
t φt = φt+κ − φt (9)

where s ∈ Uh × {0 . . . M − 2}, t ∈ {0 . . . M − 2} × Uv,
ι = (1, 0), κ = (0, 1). These finite differences can be expressed
as:

∆h
s φs = ∆h

s

N

∑
i=1

wiψ
i
s =

N

∑
i=1

wi∆h
s ψi

s =
N

∑
i=1

wiΨi
s (10)

∆v
t φt = ∆v

t

N

∑
i=1

wiψ
i
t =

N

∑
i=1

wi∆v
t ψi

t =
N

∑
i=1

wiΨi
t (11)

where Ψi
s = ∆h

s ψi
s and Ψi

t = ∆v
t ψi

t. The phase unwrapping
problem can be expressed in matrix form as

Φd = Θw (12)
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where Φd is the vector of unwrapped phase differences,

Θ =

(
Θ1

h Θ2
h Θ3

h . . . ΘN
h

Θ1
v Θ2

v Θ3
v . . . ΘN

v

)
=

(
Θh
Θv

)
, (13)

w =


w1
w2
w3
...

wN

 , (14)

Θi
h =



Ψi
(k,0)

Ψi
(k,1)

Ψi
(k,2)
...

Ψi
(k,M−2)


Θi

v =



Ψi
(0,l)

Ψi
(1,l)

Ψi
(2,l)
...

Ψi
(M−2,l)


(15)

and k ∈ Uh, l ∈ Uh.

For horizontal and vertical wrapped finite differences ∆h
s ϕs

and ∆v
t ϕt (related to phase ϕ) we express

W
{

∆h
s ϕs

}
= W {ϕs+ι − ϕs} = ϕh

s

W {∆v
t ϕt} = W {ϕt+κ − ϕt} = ϕv

t (16)

and using matrix notation:

Ωh =



ϕ(k,0)
ϕ(k,1)
ϕ(k,2)

...
ϕ(k,M−2)


, Ωv =



ϕ(0,l)
ϕ(1,l)
ϕ(2,l)

...
ϕ(M−2,l)


and Ω =

(
Ωh
Ωv

)
(17)

Given thatW
{

∆h
s ϕs

}
= ∆h

s φs andW {∆v
t ϕt} = ∆v

t φt, we can
express the residual ρ as

ρ =

(
Ωh
Ωv

)
−
(

Θh
Θv

)
w = Ω−Θw (18)

Minimizing the norm of the residual ρ

min
w
‖ρ‖ = min

w
‖Ω− Ω̂‖2 = min

w
‖Ω−Θw‖2 (19)

we obtain the optimal w∗.

4 SPATIAL DISTRIBUTION OF RBF’S FOR
PHASE RECOVERING

The distribution of the RBFs was chosen regular as shown in
Figure 2. For distributions with n × n RBF’s, the width σ for
each RBF is given by

σ =
M

(n− 1) dsg + 2do
(20)

where M is the width of the wrapped phase, dsg is the distance
between two nearest RBF’s and do is the distance of the RBF to
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(a) Spatial distribution of RBF’s centres
with uncovered zones (distribution 1).
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(b) Distribution allowing the coverage
of the whole phase Image (distribution
2). The grid of pixel lines, Vh ∪Vv , indi-
cates the position of pixels used for the
reconstruction.

FIG. 2 Regular distribution of RBF’s within V. Their centres are represented by dots (or

small circles) and their influence area by big circles.

the border of the image. Figure 2 shows the centre of the RBF’s.
The mesh in Figure 2(b) (red lines) shows a subset of pixels
used in the reconstruction. It is important to take into account
that there must be at least three horizontal and vertical pixel
lines within the influence of the RBF’s (blue circles) to achieve
the reconstruction.

G(x) = exp
(
−‖x‖

2

2σ2

)
(21)

where x ∈ V.

5 EXPERIMENTAL RESULTS

In this section we present some experimental results from our
proposed method and the methods reported by Villa et al.
method (VM) [12] and Takeda et al (TM) [3]. All algorithms
were evaluated with synthetic noiseless and synthetic noisy
phase map. The first two algorithms were also applied to
real wrapped phase maps. In all cases, our algorithm used
two spatial distributions of RBF’s (Figure 2). The centre of the
RBF’s is shown with dots. The coverage for each RBF for dis-
tribution 1 is shown by circles centred in each dot (Figure 2(a).
Figure 2(b) only shows the centre of each RBF for distribution
2. Figure 3(a) shows a synthetic test phase map with M = 512.
Figures 3(b)-(c) show the noiseless and noisy wrapped phase
maps, respectively, and Figure 4 shows their inconsistencies;
inconsistencies in the noisy phase map are about 10 times
bigger than those in the noiseless phase map. For compari-
son purposes all the reconstructed phase maps are wrapped.
Figures 5(a)-(d) show the unwrapped synthetic phase maps
from the corresponding to synthetic phase map (Figure 3(a)).
The phase map shown in Figure 5(a) is obtained using VM,
(n = 10, dsg = 1, do = 0). The phase maps shown in Fig-
ure 5(c)-(d) are reconstructed using the proposed method with
both distribution 1 (PMD1) and distribution 2 (PMD2) with
n = 10, dsg = 1, do = 0, |Uv| = |Uv| = 50, respectively.
Finally, in Figure 5(d) we use a path dependent method pro-
posed by TM. As show in Figures 6(a)-(b), the reconstructions
using the VM and PMD1 are practically the same. The recon-
struction error decreases when PMD2 is used (Figure 6(c) and
TM reconstruction error is practically zero, Figure 6(d). In Ta-
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(a) Synthetic phase map.

(b) Noiseless wrapped phase map. (c) Noisy wrapped phase map,
N (0, 0.02), (mean = 0, var = 0.02).

FIG. 3 Wrapped test phase map.

(a) Noiseless phase map inconsisten-
cies.

(b) Noisy phase map inconsistencies.

FIG. 4 Inconsistencies in phase maps from Figure 3.

ble 1 is shown a summary of reconstruction time, memory
and related error parameters. Unwrapped phase maps from
wrapped noiseless phase map are shown in Figure 9.

In a second experiment the noisy wrapped phase map is used
(shown in Figure 3(c)). The parameters used are n = 10,
dsg = 1, do = 0 for VM and n = 10, dsg = 1, do = 0,
|Uv| = |Uv| = 50 for PMD1 and PMD2. The reconstruc-
tion quality for VM, PMD1 and PMD2 (Figures 9(a)-(c)) are
higher than the TM (Figure 9(d)). The reconstruction errors
are shown in Figure 10. In this case, the reconstruction er-
rors for VM, PMD1 and PMD1 show a low error compared
with TM. In Table 2 it is shown a summary of reconstruction
time, memory and related error parameters. The reconstruc-
tion with PMD2 shows the lowest error but present greater
memory usage and computing time than PMD2 and TM.

For real images we used two wrapped phase fields obtained
experimentally, Figures 11(a) and 11(d). The first wrapped
phase map has M = 235 whereas the second wrapped phase
map has M = 250. We use n = 3 for the first and n = 4 for

(a) Reconstruction using VM. n = 10,
ds = 1, d0 = 0.

(b) Reconstruction using the proposed
method for distribution 1. n = 10,
ds = 1, d0 = 0, |Uv | = |Uv | = 50.

(c) Reconstruction using the proposed
method, distribution 2. n = 10, ds = 1,
d0 = 0, |Uv | = |Uv | = 50.

(d) Reconstruction using the method
proposed by TM.

FIG. 5 Wrapped recovered phase maps from wrapped noiseless phase map.

(a) Corresponding reconstruction error
in Figure 5(a).

(b) Corresponding reconstruction error
in Figure 5(b).

(c) Corresponding reconstruction error
in Figure 5(c).

(d) Corresponding reconstruction er-
ror in Figure 5(d).

FIG. 6 Reconstruction error in the noiseless wrapped phase map shown in Figure 3(b).

the second phase map in the phase unwrapping algorithm.
In both cases we use the two distributions with dsg = 1 and
do = 0 and the space between lines of ten. The results ap-
plying our technique are shown in Figures 11(b), 11(c), 11(e)
and 11(f).

We also applied our in a situation when there is a region of
interest (ROI) or a pupil in the image (for example in op-
tical tests). In this case we compare our method to Arines
method [13]. From Figure 12 we can see that the reconstructed
phase map for both methods are similar. For this case our
method also presents better memory and time performance.
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Memory Time Error
Method (Kb) (seg) max min rms norm2

Villa et al. 409600.000 6.011 -1.503 1.184 0.0008 175.075
Proposed method1 4096.000 0.694 -1.449 1.205 0.0008 172.712
Proposed method2 7413.760 1.492 -0.795 0.670 0.0002 22.166
Takeda et al. 4096.000 0.015 -0.000 -0.000 0.0000 0.000

TABLE 1 Reconstruction performance and errors summary from Figure 6.

Memory Time Error
Method (Kb) (seg) max min rms norm2

Villa et al. 409600.000 6.110 -7.981 6.274 0.0057 1111.441
Proposed method1 4096.000 0.698 -7.706 6.297 0.0057 1205.877
Proposed method2 7413.760 1.455 -7.168 6.225 0.0054 1095.579
Takeda et al. 4096.000 0.022 -46.916 39.179 0.0263 6394.984

TABLE 2 Reconstruction performance and errors summary from Figure 10.

(a) Reconstruction using VM. n = 10,
ds = 1, d0 = 0.

(b) Reconstruction using the proposed
method, distribution 1. n = 10, ds = 1,
d0 = 0, |Uv | = |Uv | = 50.

(c) Reconstruction using the proposed
method, distribution 2. n = 10, ds = 1,
d0 = 0, |Uv | = |Uv = 50.

(d) Reconstruction using TM.

FIG. 7 Unwrapped phase maps from the wrapped noiseless phase map.

6 CONCLUSIONS

We have presented an algorithm based on sampled radial
basis functions to recover the phase from a wrapped phase
map. This algorithm has good performance when working
with smooth phase maps with low level of noise. The sam-
pling of the phase map allows to decrease both the process-
ing time and the memory resource required to unwrapped the
phase when compared to the VM and Arines methods [13]. We
found that The distribution 2 produces better results than dis-
tribution 1 when is it applied to a noisy phase map and to an
interferograms with pupil.
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