Journal of the European Optical Society - Rapid publications, Vol 1 (2006)

Photonic crystal fibres: mapping Maxwell's equations onto a Schrödinger equation eigenvalue problem

N. A. Mortensen

Abstract


We consider photonic crystal fibres (PCFs) made from arbitrary base materials and introduce a short-wavelength approximation which allows for a mapping of the Maxwell's equations onto a dimensionless eigenvalue equations which has the form of the Schröding equation in quantum mechanics. The mapping allows for an entire analytical solution of the dispersion problem which is in qualitative agreement with plane-wave simulations of the Maxwell's equations for large-mode area PCFs. We offer a new angle on the foundation of the endlessly single-mode property and show that PCFs are endlessly single mode for a normalized air-hole diameter smaller than ~042, independently of the base aterial. Finally, we show how the group-velocity dispersion relates simply to the geometry of the photonic crystal cladding.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2006.06009]

Full Text: PDF

Citation Details


Cite this article

References


J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding" Opt. Lett. 21, 1547-1549 (1996).

T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single mode photonic crystal fibre" Opt. Lett. 22, 961-963 (1997).

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres" Electron. Lett. 36, 1998-2000 (2000).

V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. S. J. Russell, F. G. Omenetto, and A. J. Taylor, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation" Opt. Express 10, 1520-1525 (2002).

V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. S. J. Russell, "Tellurite photonic crystal fiber" Opt. Express 11, 2641-2645 (2003).

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity" Opt. Express 12, 5082-5087 (2004).

E. Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, "Silver halide photonic crystal fibers for the middle infrared" Appl. Opt. 43, 2236-2241 (2004).

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide" Jap. J. Appl. Phys. 43, L317-L319 (2004).

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre" Opt. Express 9, 319-327 (2001).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, 1995).

N. A. Mortensen, "Semianalytical approach to short-wavelength dispersion and modal properties of photonic crystal fibers" Opt. Lett. 30, 1455 - 1457 (2005).

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequencydomain methods for Maxwell's equations in a planewave basis" Opt. Express 8, 173-190 (2001).

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maynstre, L. C. Botton, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results" J. Opt. Soc. Am. B 19, 2331-2340 (2002).

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers" IEEE J. Quantum Electron. 38 927-933 (2002).

J. Riishede, N. A. Mortensen, and J. Lægsgaard, "A poor man's approach to modelling of microstructured optical fibers" J. Opt. A: Pure. Appl. Opt. 5, 534 (2003).

C. Flindt, N. A. Mortensen, and A. P. Jauho, "Quantum computing via defect states in two-dimensional antidot lattices" Nano Lett. 5, 2515 - 2518 (2005).

P. A. Laura, E. Romanelli, and M. J. Maurizi, "On the analysis of waveguides of double-connected cross-section by the method of conformal mapping" J. Sound Vibr. 20, 27-38 (1972).

L. I. Glazman, G. K. Lesovik, D. E. Khmelnitskii, and R. I. Shekter, "Reflectionsless quantum transport and fundamental ballisticresistance steps in microscopic constrictions" JETP Lett. 48, 238- 241 (1988).

Femlab, http://www.comsol.com.

N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, "Modal cut-off and the V-parameter in photonic crystal fibers" Opt. Lett. 28, 1879-1881 (2003).

N. A. Mortensen, "Effective area of photonic crystal fibers" Opt. Express 10, 341-348 (2002).

K. Saitoh, Y. Tsuchida, M. Koshiba, and N. A. Mortensen, "Endlessly single-mode holey fibers: the influence of core design" Opt. Express 13, 10833 - 10839 (2005).

K. Saitoh, M. Koshiba, and N. A. Mortensen, "Nonlinear photonic crystal fibres: pushing the zero-dispersion toward the visible" Special issue on nanophotonics to appear in New J. Phys. (2006).

N. A. Mortensen and J. R. Folkenberg, "Low-loss criterion and effective area considerations for photonic crystal fibers" J. Opt. A: Pure Appl. Opt. 5, 163-167 (2003).