Journal of the European Optical Society - Rapid publications, Vol 1 (2006)
Efficient optimization of hollow-core photonic crystal fiber design using the finite-element method
Abstract
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2006.06011]
Citation Details
Cite this article
References
A. Bjarklev, J. Broeng, A. S. Bjarklev, Photonic Crystal Fibres (Kluwer, Boston, MA, USA, 2003).
J. D. Shephard, F. Couny, P. S. J. Russell, J. D. Jones, J. C. Knight, D. P. Hand, "Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications" Appl. Opt. 44, 4582 - 4588 (2005).
S. Johnson, J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis" Opt. Express 8, 173-190 (2001).
G. J. Pearce, T. D. Hedley, D.M. Bird, "Adaptive curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystals" Phys. Rev. B 71, 195108 (2005).
K. Saitoh and M. Koshiba, "Numerical Modeling of Photonic Crystal Fibers" J. Lightwave Technol. 23, 3580 - 3590 (2005).
K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers" IEEE J. Quantum Electron. 38, 927 - 933 (2002).
V. F. Rodrígues-Esquerre, M. Koshiba, H. E. Hernández-Figueroa, "Finite-element analysis of photonic crystal cavities: time and frequency domains" J. of Lightwave Technol. 23, 1514 - 1521 (2005).
A. Cucinotta, S. Selleri, L. Vincetti, "Holey fiber analysis through the finite-element method" IEEE Phot. Technol. Lett. 14, 1530 - 1532 (2002).
F. Brechet, J. Marcou, D. Pagnoux, P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite-element method" Opt. Fiber Technol. 6, 181 - 191 (2000).
H.P. Uranus and H.J.W.M. Hoekstra, "Modeling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions" Opt. Express 12, 2795 - 2809 (2004).
Comsol Multiphysics simulation environment (previously Femlab), electromagnetics module, http://www.comsol.com/products/electro/overview.php
L. Zschiedrich, S. Burger, R. Klose, A. Schädle, F. Schmidt, "JCMmode: an adaptive finite element solver for the computation of leaky modes" Proc. SPIE 5728, 192 - 202 (2005).
S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, C. Nölscher, "Benchmark of FEM, waveguide and FDTD algorithms for rigorous mask simulation" Proc. SPIE 5992, 378 - 379 (2005).
JCMmode is produced by JCMwave GmbH, Munich, Germany, www.jcmwave.com
P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. Birks, J. Knight, and P. S. J. Russell, "Loss in solid-core photonic crystal fibers due to interface roughness scattering" Opt. Exp. 13, 7779 - 7793 (2005).
P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight and P. S. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibers" Opt. Express 13, 236 - 244 (2005).
O. Schenk, K. Gärtner, "Solving unsymmetric sparse systems of linear equations with PARDISO" J. of Future Gen. Comp. Sys. 20, 475 - 487 (2004).
R. Holzlöhner, B. J. Mangan, D. Bonaccini, "Ultra-low loss hollowcore photonic crystal fibers at 589 nm for LGS-assisted AO" SPIE Conference on Advances in Adaptive Optics II, Orlando, FL, USA, May 2006, poster 6272 - 150.
B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight and P. S. J. Russell, "Low loss (1.7 dB/km) hollow core photonic bandgap fiber" in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24.
N. A. Mortensen and M. D. Nielsen, "Modeling of realistic cladding structures for air-core photonic band-gap fibers" Opt. Lett. 29, 349 - 351 (2004).
P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, P. S. J. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround" Opt. Express 13, 8277 - 8285 (2005).
P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides I: summary of results" IEEE Trans. Microwave Theory Tech. MTT-23, 421 - 429 (1975).
P. R. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides II: theory" IEEE Trans. Microwave Theory Tech. MTT-23, 429 - 433 (1975).
T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation" J. Opt. Soc. Am. B 19, 2322 - 2330 (2002).
R. Guobin, W. Zhi, L. Shuquin, J. Shuisheng, "Mode classification and degeneracy in photonic crystal fibers" Opt. Express 11, 1310 - 1321 (2003).
J. Pomplun, S. Burger, R. Holzlöhner, R. Klose, L. Zschiedrich, F. Schmidt, "FEM investigation of light propagation in hollow core photonic crystal fibers" Spring Meeting of the German Physical Society DPG, Frankfurt, Germany, March 2006, Talk Q 59.5.
P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight and P. S. J. Russell, "Control of dispersion in photonic crystal fibers" J. of Opt. and Fiber Comm. Reports 2, 435 - 461 (2005).
J.C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions" SIAM J. of Optimization 9, 112 - 147 (1998).
R. Simon, E. C. G. Sudarshan, N. Mukunda, "Gaussian-Maxwell beams" J. Opt. Soc. Am. A 3, 536 - 540 (1986).
E.-G. Neumann, Single-Mode Fibers - Fundamentals (Springer- Verlag, Berlin, Germany,1988).
J. Lægsgaard, N. A. Mortensen, J. R. Riischede, and A. Bjarklev, "Material effects in air-guiding photonic bandgap fibers" J. Opt. Soc. Am. B 20, 2046 - 2051 (2003).
J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers" Opt. Express 12, 1485 - 1496 (2004).