Journal of the European Optical Society - Rapid publications, Vol 1 (2006)

Resonant second harmonic generation in random dielectric structures

M. Centini, D. Felbacq, D. s. Wiersma, C. Sibilia, M. Scalora, M. Bertolotti

Abstract


We show that resonant second harmonic generation can be btained in random dielectric structures. The scheme is based on internal resonances due to the optical counterpart of Anderson localization. By making use of different localization lengths at the fundamental and at the second harmonic frequencies, we predict a conversion efficiency that is four orders of magnitude higher than a bulk material and even one order of magnitude higher than an ideal phase matched slab of the same size. The method is highly insensitive to fabrication tolerances, and provides excellent angle tunability.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2006.06021]

Full Text: PDF

Citation Details


Cite this article

References


M. Bertolotti, C.M. Bowden and C. Sibilia, AIP vol. 560 (AIP, Melville 2001).

Topics in Applied Physics, V.M. Shalaev, ed., Vol. 82 (Springer- Verlag Berlin Heidelberg 2002).

E. Centeno, Opt. Lett. 30, 1054 (2005).

M. Scalora, M. J. Bloemer, C.M. Bowden, G. D'Aguanno et al.: April 2001 Optics & Photonics News 39 .

G. D'Aguanno, M. Centini, M. Scalora, C. Sibilia et al. J. Opt. Soc. Am. B 19, 2111 (2002).

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic et al. Phys. Rev Lett. 89, 043901 (2002).

M. Centini, G. D'Aguanno, L. Sciscione, C. Sibilia et al. Opt. Lett. 29, 1924 (2004).

D.Faccio, F.Bragheri, Phys. Rev. E, 71, 057602 (2005).

M. Baudrier-Raybaut, R Haidar, Ph. Kupecek, Ph. Lemasson, E. Rosencher, Nature 432, 374 (2004).

V.A. Melnikov, L.A. Golovan, S. O. Konorov D.A. Muzychenko et al, Appl. Phys. B 79, 225 (2004).

P. W. Anderson, Phys. Rev. 109, 1492 (1958).

J. B. Pendry, J. Phys. C 20, 733 (1987).

J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, L. Pavesi, Phys. Rev. Lett. 94, 113903, (2005).

T. Ochiai, K. Sakoda, Optics Express 13, 9094 (2005)