Journal of the European Optical Society - Rapid publications, Vol 1 (2006)

Laser Doppler imaging of microflow

M. Atlan, M. Gross, J. Leng

Abstract


We report results obtained with a wide-field laser Doppler detection
scheme used to perform laser Doppler anemometry and imaging of
particle-seeded microflow. The optical field carrying the local
scatterers (particles) dynamic state, as a consequence of momentum transfer at each scattering event, is analyzed in the temporal frequencies domain. The setup is based on heterodyne digital holography, which is used to map the scattered field in the object plane at a tunable frequency with a multipixel detector. We show that wide-field heterodyne laser Doppler imaging can be used for quantitative microflow diagnosis; in the presented study, maps of the first-order moment of the Doppler frequency shift are used as a quantitative and directional estimator of the Doppler signature of particles velocity.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2006.06025]

Full Text: PDF

Citation Details


Cite this article

References


H. Komine and S. J. Brosnan, Instantaneous, three-component, doppler global velocimetry pages 273-277 (1991).

J. Meyers and H. Komine, "Doppler global velocimetry: A new way to look at velocity" Laser Anemometry 1, 289 (1991).

James F Meyers, Joseph W Lee, and Richard J Schwartz, "Characterization of measurement error sources in doppler global velocimetry" Measurement Science and Technology 12(4), 357-368 (2001).

C.-T Yang and H.-S Chuang, "Measurement of a microchamber flow by using a hybrid multiplexing holographic velocimetry" Experiments in Fluids V39(2), 385-396 (2005).

F. LeClerc, L. Collot, and M. Gross, "Numerical heterodyne holography with two-dimensional photodetector arrays" Optics Letters 25(10), 716-718 (2000).

M. Gross, P. Goy, and M. Al-Koussa, "Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging" Optics Letters 28, 2482-2484 (2003).

M. Atlan, M. Gross, T. Vitalis, A. Rancillac, B. C. Forget, and A. K. Dunn, "Frequency-domain, wide-field laser doppler in vivo imaging" Optics Letters 31(18) (2006).

George W. Stroke, "Lensless fourier-transform method for optical holography" Applied Physics Letters 6(10), 201-203 (1965).

U. Schnars and W. Juptner, "Direct recording of holograms by a ccd target and numerical reconstruction" Applied Optics 33, 179-181 (1994).

Christoph Wagner, Sonke Seebacher, Wolfgang Osten, and Werner Juptner, "Digital recording and numerical reconstruction of lensless fourier holograms in optical metrology" Applied Optics 38, 4812-4820 (1999).

U. Schnars and W. P. O. Juptner, "Digital recording and numerical reconstruction of holograms" Meas. Sci. Technol. 13, R85-R101 (2002).

Thomas M. Kreis, "Frequency analysis of digital holography" Optical Engineering 41(4), 771-778 (2002).

J. Leng, B. Lonetti, P. Tabeling, M. Joanicot, and A. Ajdari, "Microevaporators for the kinetic inspection of phase diagrams" Physical Review Letters 96(8), 084503 (2006).

J. Goulpeau, D. Trouchet, A. Ajdari, and P. Tabeling, "Experimental study and modeling of polydimethylsiloxane peristaltic micropumps" Journal of Applied Physics 98(4) (2005).

E. Verneuil, A. Buguin, and P. Silberzan, "Permeation-induced flows: Consequences for silicone-based microfluidics" Europhysics Letters 68(3), 412-418 (2004).

A. Serov, W. Steenbergen, and F. de Mul, "Laser doppler perfusion imaging with complementary metal oxide semiconductor image sensor" Optics Letters 27, 300 (2002).

Y. Yeh and H. Z. Cummins, "Localized fluid flow measurements with an he-ne laser spectrometer" Appl. Phys. Lett. 4, 176-179 (1964).

B. J. Berne and R. Pecora, Dynamic Light Scattering, (Dover, 2000).

Ichirou Yamaguchi, Jun ichi Kato, Sohgo Ohta, and Jun Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy" Applied Optics 40(34), 6177-6186 (2001).