Journal of the European Optical Society - Rapid publications, Vol 1 (2006)

Multi-kernel deconvolution applied to confocal fluorescence microscopy with engineered point spread function

B. Simon, O. Haeberlé

Abstract


Fluorescence microscopy is a powerful technique in biology, because of the immense variety of markers now available. Compared to other methods, its resolution is however limited. In wide-field microscopy, the technique of structured illumination permits to improve the lateral resolution by a factor of two, even surpassing confocal microscopy, which permits a theoretical gain of about 40%. We propose an alternate technique, combining laterally interfering focused beams, which should permit the same gain of resolution in a confocal microscope. Furthermore, this technique, combined with multiple acquisition and multikernel deconvolution, permits a better object reconstruction than classical monokernel deconvolution using a regular excitation point spread function.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2006.06028]

Full Text: PDF

Citation Details


Cite this article

References


Abbe E., Arch. Mikrosk. Anat. 9, 413 (1873).

D. Minsky, Scanning 10, 128 (1988).

M.G.L. Gustafsson, J. Microsc. 198, 82 (2000).

M. G. L. Gustafsson, Curr. Opin. Struct. Biol. 9, 627 (1999).

B. Bailey et al., Nature 366, 44 (1993).

B. Bailey et al., Proc SPIE 2184, 208 (1994).

V. Krishnamurthi, B. Bailey and F. Lanni, Proc SPIE 2655, 18. (1994).

M. Nagorni and S. W. Hell, J. Opt. Soc. Am. A 18, 49 (2001).

M. G. L. Gustafsson, D. A. Agard and J. W. Sedat, Proc SPIE 2412 , 147 (1995).

S. W. Hell and E. H. K. Stelzer, J. Opt. Soc. Am. A 9, 2159 (1992).

M. Nagorni and S. W. Hell, J. Opt. Soc. Am. A 18, 36 (2001).

S. W. Hell, "Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering", Topics in Fluorescence Spectroscopy, J. Lakowicz ed., Vol. 5: Nonlinear and Two- Photon-Induced Fluorescence (Plenum Press, New York 1997).

M. G. L Gustafsson, D.A. Agard and J.W. Sedat, US patent 5671085 (1997).

R. Heintzmann and C. Cremer, Proc. SPIE 3568, 185 (1998).

J. T. Frohn, H.F. Knapp, and A. Stemmer, Proc. Natl. Acad. Sci. USA 97, 7232 (2000).

O. Haeberlé and B. Simon, Opt. Comm. 259, 400 (2006).

O. Haeberlé, Opt. Comm. 216, 55 (2003).

P. Török and P. Varga, Appl. Opt. 36, 2305 (1997).

S.F. Gibson and F. Lanni, J. Opt. Soc. Am. A 8, 1601 (1991).

O. Haeberlé et al., Opt. Exp. 11, 2964 (2003).

O. Haeberlé, Opt. Comm. 235, 1 (2004).

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).

D. C. Ghiglia, J. Opt. Soc. Am. A 1, 398 (1984).

F. Goudail, O. Ruch and P. Réfrégier, Appl. Opt. 39, 6602 (2000).

S. J. Reeves and R. M. Mersereau, Opt. Eng. 29, 446 (1990).

B. Colicchio et al., Opt. Comm. 244, 37 (2005).

M. G. L Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005).

W. Wesphal, L. Kastrup and S. W. Hell, Appl. Phys. B 77, 377. (2003).

J. Swoger, J. Huisken, and E. H. K. Stelzer, Opt. Lett. 28, 1654 (2003).

S. Kikuchi et al., Opt. Comm. 129, 237 (1996).

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt and E. H. K. Stelzer, Science 305, 1007 (2004)