Journal of the European Optical Society - Rapid publications, Vol 1 (2006)

Inversion of a guided optical vortex

A. V. Carpentier, H. Michinel, J. R. Salgueiro, S. Doval, A. Ferrando

Abstract


We demonstrate, both theoretically and experimentally, the inversion of the topological charge of a vortex that propagates through an optical fiber. In our experiment, we couple the vortex to a two-mode fiber and we control the charge inversion by deformation of the optical fiber.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2006.06031]

Full Text: PDF

Citation Details


Cite this article

References


J. F. Nye and M. V. Berry, "Dislocations in wave trains" Proc. R. Soc. London Ser. A 336, 165-190 (1974).

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity" Phys. Rev. Lett. 75, 826-829 (1995).

A. H. Carlsson, J. N. Malmberg, D. Anderson, M. Lisak, E. A. Ostrovskaya, T. J. Alexander, and Y. S. Kivshar, "Linear and nonlinear waveguides induced by optical vortex solitons" Opt. Lett. 25, 660- 662 (2000).

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner" Opt. Lett. 22, 52-54 (1997).

G. Foo, D. M. Palacios, and G. A. Swartzlander, Jr., "Optical vortex coronagraph" Opt. Lett. 30, 3308-3310 (2005).

K. T. Gahagan, and G. A. Swartzlander, Jr., "Optical vortex trapping of particles" Opt. Lett. 21, 827-829 (1996).

M. Vasnetsov and K. Staliunas Eds., Optical Vortices, Nova Science, New York (1999).

N. B. Baranova, A. V. Mamaev, N. F. Pilipetsky, N. F. Shkunov, and V. V. Zeldovich, "Wave-front dislocations. Topological limitations for adaptive systems with phase conjugation" J. Opt. Soc. Am. 73, 525-528 (1983).

P. Coullet, L. Gil, and F. Rocca, "Optical vortices" Opt. Comm. 73, 403-408 (1989).

N. R. Heckenbeerg, R. McDuff, C. P. Smith, and A. G. White, "Generation of optical-phase singularities by computer-generated holograms" Opt. Lett. 17, 221-223 (1992).

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, "Conversion of topological charge of optical vortices in a parametric frequency converter" Opt. Co. 140, 273-276 (1997).

G. Molina-Terriza, J. Recolons, J. P. Torres, and Lluis Torner "Observation of the dynamical inversion of the topological charge of an optical vortex" Phys. Rev. Lett. 87, 023902 (2001).

G. Molina-Terriza, J. Recolons, and L. Torner, "The curious arithmetic of optical vortices" Opt. Lett. 25, 1135-1137 (2000).

D. McGloin, N. B. Simpson, and M. J. Padgett, "Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam" Appl. Opt. 37, 469-472 (1998).

A. V. Volyar,and T. A. Fadeeva, "Vortical nature of optical-fiber modes. IV. Orthogonal transformations of topological charge and circular polarization of an optical vortex" Tech. Phys. Lett. 22, 722-724 (1996).

A. N. Alexeyev, T. A. Fadeeva, A. V. Volyar, and M. S. Soskin, "Optical vortices and the flow of their angular momentum in a multimode fiber" Sem. Cond. Phys., Quant. Elect. and Opt. 1, 82-89 (1998).

M. J. Padgett, and J. Courtial, "Poincaré-sphere equivalent for light beams containing orbital angular momentum" Opt. Lett. 24, 430- 432 (1999).

M. Hamermesh, Group theory and its application to physical problems (Addison-Wesley, Reading, Massachusetts 1964).