Journal of the European Optical Society - Rapid publications, Vol 2 (2007)

Concealment by uniform motion

T. G. Mackay, A. Lakhtakia

Abstract


The perceived lateral position of a transmitted beam, upon propagating through a slab made of homogeneous, isotropic, dielectric material at an oblique angle, can be controlled through varying the velocity of the slab. In particular, by judiciously selecting the slab velocity, the transmitted beam can emerge from the slab with no lateral shift in position. Thereby, a degree of concealment can be achieved. This concealment is explored in numerical calculations based on a 2D Gaussian beam.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2007.07003]

Full Text: PDF

Citation Details


Cite this article

References


E. Wolf and T. Habashy, "Invisible bodies and uniqueness of the inverse scattering problem" J. Mod. Optics 40, 785-792 (1993).

V. A. Fedotov, P.L. Mladyonov, S.L. Prosvirnin, and N.I. Zheludev, "Planar electromagnetic metamaterial with a fish scale structure" Phys. Rev. E 72, 056613 (2005).

A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings" Phys. Rev. E 72, 016623 (2005). Erratum 73, 019906(E) (2006).

J. Hecht, "Photonic frontiers: metamaterials" Laser Focus World (July 2006). http://lfw.pennnet.com/articles/articledisplay.cfm?article-id=259931

U. Leonhardt, "Optical conformal mapping" Science 312, 1777-1780 (2006).

G. W. Milton and N-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance" Proc. R. Soc. Lond. A 462, 3027-3059 (2006).

D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science 314, 977-980 (2006).

T. G. Mackay and A. Lakhtakia, "Negative phase velocity in a uniformly moving, homogeneous, isotropic, dielectric-magnetic medium" J. Phys. A: Math. Gen. 37, 5697-5711 (2004).

T. G. Mackay and A. Lakhtakia, "On electromagnetics of an isotropic chiral medium moving at constant velocity" Proc. R. Soc. Lond. A 463, 397-418 (2007).

D.G. Stavenga, "Invertebrate superposition eyes - structures that behave like metamaterial with negative refractive index" J. Eur. Opt. Soc - Rapid Pub. 1, 06010 (2006).

H. C. Chen, Theory of electromagnetic waves (McGraw-Hill, New York, NY, USA, 1983), Chap. 8.

T.G. Mackay and A. Lakhtakia, "Counterposition and negative refraction due to uniform motion" Microwave Opt. Technol. Lett. (to appear). http://arxiv.org/abs/physics/0610039.

A. Lakhtakia and M. W. McCall, "Counterposed phase velocity and energy-transport velocity vectors in a dielectric-magnetic uniaxial medium" Optik 115, 28-30 (2004).

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, USA, 1984).

S. W. Smith, The scientist and engineer's guide to digital signal processing (California Technical Publishing, San Diego, CA, USA, 1997).

A. Lakhtakia and R. Messier, Sculptured thin films: Nanoengineered optics and morphology (SPIE Press, Bellingham, WA, USA, 2005).