Journal of the European Optical Society - Rapid publications, Vol 2 (2007)
Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform
Abstract
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2007.07012]
Citation Details
Cite this article
References
M. Born and E. Wolf, Principles of Optics (7th rev. ed., Ch. 9 and App. VII, Cambridge University Press, Cambridge, MA, 2001).
D. Malacara, Optical Shop Testing (2nd ed., Wiley, 1992).
V. N. Mahajan, "Zernike circle polynomials and optical aberrations of systems with circular pupils" Appl. Optics. 33, 8121-8124 (1994).
R. J. Noll, "Zernike polynomials and atmospheric turbulence" J. Opt. Soc. Am. 66, 207-211 (1976).
A. Prata and W. V. T. Rusch, "Algorithm for computation of Zernike polynomials expansion coefficients" Appl. Optics 28, 749- 754 (1989).
D. Calvetti, "A stochastic roundoff error analysis for the Fast Fourier Transform" Math. Comput. 56, 755-774 (1991).
See http://en.wikipedia.org/wiki/Fast_Fourier_transform .
A. J. E. M. Janssen and P. Dirksen, "Concise formula for the Zernike coefficients of scaled pupils", J. Microlith. Microfab. Microsyst. 5, 030501 (2006).
S. R. Deans, The Radon transform and some of its applications (Wiley, New York, 1983, Sec. 7.6, Eq. 6.11).
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).