Journal of the European Optical Society - Rapid publications, Vol 2 (2007)

Dyakonov--Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material

A. Lakhtakia, J. A. Polo, Jr.

Abstract


Surface waves, named here as Dyakonov--Tamm waves, can exist at the planar interface of an isotropic dielectric material and a chiral sculptured thin film (STF). Due to the periodic nonhomogeneity of a chiral STF, the range of the refractive index of the isotropic material is smaller but the range of the propagation direction in the interface plane is much larger, in comparison to those for the existence of Dyakonov waves at the planar interface of an isotropic dielectric material and a columnar thin film.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2007.07021]

Full Text: PDF

Citation Details


Cite this article

References


M. I. D'yakonov, "New type of electromagnetic wave propagating at an interface" Sov. Phys. JETP 67, 714-716 (1988).

L. Torner, J. P. Torres and D. Mihalache, "New type of guided waves in birefringent media" IEEE Photonic. Tech. L. 5, 201-203 (1993).

L. Torner, J. P. Torres, C. Ojeda and D. Mihalache, "Hybrid waves guided by ultrathin films" J. Lightwave Technol. 13, 2027-2033 (1995).

D. B. Walker, E. N. Glytsis and T. K. Gaylord, "Surface mode at isotropic-uniaxial and isotropic-biaxial interfaces" J. Opt. Soc. Am. A 15, 248-260 (1998).

D. Artigas and L. Torner, "Dyakonov surface waves in photonic metamaterials" Phys. Rev. Lett. 94, 013901 (2005).

J. A. Polo, Jr., S. R. Nelatury and A. Lakhtakia, "Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate" J. Nanophoton. 1, 013501 (2007).

A. Lakhtakia and R. Messier, Sculptured thin films: Nanoengineered morphology and optics (SPIE Press, Bellingham, WA, USA, 2005).

P.G. de Gennes and J. Prost, The physics of liquid crystals (Clarendon Press, Oxford, United Kingdom, 1993).

C. Kittel, Introduction to solid state physics (Wiley Eastern, New Delhi, India, 1974).

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang and L. Esaki, "Observation of "Tamm states" in superlattices" Phys. Rev. Lett. 64, 2555-2558 (1990).

J. Martorell, D. W. L. Sprung and G. V. Morozov, "Surface TE waves on 1D photonic crystals" J. Opt. A: Pure Appl. Op. 8, 630-638 (2006).

A. Namdar, I. V. Shadrivov and Y. S. Kivshar, "Backward Tamm states in left-handed metamaterials" Appl. Phys. Lett. 89, 114104 (2006).

I. J. Hodgkinson, Q. h. Wu and J. Hazel, "Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide" Appl. Optics 37, 2653-2659 (1998).

H. C. Chen, Theory of electromagnetic waves (TechBooks, Fairfax, VA, USA, 1992).

J. Van Bladel, Electromagnetic fields (Hemisphere, Washington, DC, USA, 1985).

A. Lakhtakia and W. S. Weiglhofer, "Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation" P. Roy. Soc. Lond. A Mat. 453, 93-105 (1997); correction: 454, 3275 (1998).

M. Schubert and C. M. Herzinger, "Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films" Phys. Status Solidi A 188, 1563-1575 (2001).

J. A. Polo, Jr. and A. Lakhtakia, "Comparison of two methods for oblique propagation in helicoidal bianisotropic mediums" Opt. Commun. 230, 369-386 (2004).

V. A. Yakubovich and V. M. Starzhinskii, Linear differential equations with periodic coefficients (Wiley, New York, NY, USA, 1975).

R. Messier, V. C. Venugopal and P. D. Sunal, "Origin and evolution of sculptured thin films" J. Vac. Sci. Technol. A 18, 1538-1545 (2000).