Journal of the European Optical Society - Rapid publications, Vol 2 (2007)

Mode suppression in a microcavity solid-state dye laser

S. Popov, S. Ricciardi, A. T. Friberg, S. Sergeyev

Abstract


A solid-state dye laser with a microcavity whose size is comparable to the lasing wavelength, is modeled by means of the finite element method. The position of the pumping source affects the lasing mode spectrum. In comparison with a single point source at the edge of the cavity, a random distribution of excitation sources in the central gain part of the microcavity leads to suppression of odd longitudinal modes and to higher output efficiency of the laser radiation in even modes. The modeling and simulation results are explained by simple physical considerations.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2007.07023]

Full Text: PDF

Citation Details


Cite this article

References


I. M. White, Z. Hongying, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and F. Xudong, "Refractometric sensors for lab-on-achip based on optical ring resonators" IEEE Sens. J. 7, 28-35 (2007).

H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules" Nature 442, 387-393 (2006).

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics" Nature 442, 381-386 (2006).

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice" Nature, 426, 421-424 (2003).

F. J. Duarte, ed., Tunable Lasers Handbook (Elsevier, Amsterdam, 1995).

B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, "The fluorescent toolbox for assessing protein location and function" Science 312, 217-224 (2006).

P. N. Prasad, Introduction to Biophotonics (Wiley, New York, 2003).

S. Balslev and A. Kristensen, "Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments" Opt. Express 13, 344-351 (2005).

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Realtime tunability of chip-based light source enabled by microfluidic mixing" J. Appl. Phys. 99, 23102:1-5 (2006).

Y. Cheng, K. Sugioka, and K. Midorikawa, "Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing" Opt Lett. 29, 2007-2009 (2004).

A. Costela, I. Garcia-Moreno, D. del Agua, O. Garcia, and R. Sastre, "Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers" Appl. Phys. Lett. 85, 2160-2162 (2004).

F. Duarte and R. O. James, "Tunable solid-state lasers incorporating dye-doped, polymer-nanoparticle gain media" Opt. Lett. 28, 2088- 2090 (2003).

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "New organic-inorganic hybrid matrices doped with rhodamine 6G as solid-state dye lasers" Appl. Phys. B 75, 827-833 (2002).

M. Hansen-Gersborg, S. Balslev, and N.A. Mortensen, "Finiteelement simulation of cavity modes in a microfluidic dye ring laser" J. Opt. A 8, 17-20 (2006).

H. El Rhaleb, N. Cella, J. P. Roger, D. Fournier, A. C. Boccara and A. Zuber, "Beam size and collimation effects in spectroscopic ellipsometry of transparent films with optical thickness inhomogeneity" Thin Solid Films 288, 125-131 (1996).

http://www.microchem.com/products/su_eight.htm.

E. Hecht, Optics, 4th ed. (Addison Wesley, San Francisco, 2002).