Journal of the European Optical Society - Rapid publications, Vol 3 (2008)

Nanostructure design for surface-enhanced Raman spectroscopy -- prospects and limits

S. Xiao, N. A. Mortensen, A.-P. Jauho

Abstract


Surface-enhanced Raman spectroscopy (SERS) allows single-molecule detection due to the strong field localization occurring at sharp bends or kinks of the metal-vacuum interface. An important question concerns the limits of the signal enhancement that can be achieved via a judicious design of the surface. By using a specific example of a technologically realizable nanopatterned surface, we demonstrate that while very high enhancement factors (~10^12) can be found for an ideal surface, these are unlikely to be achieved in laboratory samples, because even a minute, inevitable rounding-off strongly suppresses the enhancement, as well as shifts the optimal frequency. Our simulations indicate that the geometric enhancement factors are unlikely to exceed ~10^8 for real samples, and that it is necessary to consider the geometric uncertainty to reliably predict the frequency for maximum enhancement.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2008.08022]

Full Text: PDF

Citation Details


Cite this article

References


M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman-spectra of pyridine adsorbed at a silver electrode" Chem. Phys. Lett. 26, 163-166 (1974).

M. Moskovits, "Surface-enhanced spectroscopy" Rev. Mod. Phys. 57, 783 - 826 (1985).

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)" Phys. Rev. Lett. 78, 1667 - 1670 (1997).

F. J. García-Vidal, and J. B. Pendry, "Collective theory for surface enhanced Raman scattering" Phys. Rev. Lett. 77, 1163 - 1166 (1996).

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces" Science 305, 847 - 848 (2004).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics" Nature 424, 824 - 830 (2003).

S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding" Nature Photonics 1, 641 - 648 (2007).

E. Moreno, F. J. García-Vidal, S. G. Rodrigo, L. Martín-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses" Opt. Lett. 31, 3447 - 3449 (2006).

S. I. Bozhevolnyi, (private communication).

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding" Phys. Rev. B 76, 035434 (2007).

J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Near-field electromagnetic wave scattering from random self-affine fractal metal surfaces: Spectral dependence of local field enhancements and their statistics in connection with surface-enhanced Raman scattering" Phys. Rev. B 62, 10515 - 10525 (2000).

J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Electromagnetic mechanism in surface-enhanced Raman scattering from Gaussian-correlated randomly rough metal substrates" Opt. Express 10, 879 - 886 (2002).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators" Nature 440, 508 - 511 (2006).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves" J. Comput. Phys. 114, 185-200 (1994).

F. Wang, and Y. R. Shen, "General properties of local plasmons in metal nanostructures" Phys. Rev. Lett. 97, 206806 (2006).