Journal of the European Optical Society - Rapid publications, Vol 3 (2008)

Spectral confocal reflection microscopy using a white light source

M. Booth, R. Juškaitis, T. Wilson

Abstract


We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2008.08026]

Full Text: PDF

Citation Details


Cite this article

References


T. Wilson (ed.), Confocal Microscopy (Academic Press, London, 1990).

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo- Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy" J. Phys. D Appl. Phys. 37, 3296-3303 (2004).

T. Betz, J. Teipel, D. Koch, W. Hartig, J. Guck, J. Kas, and H. Giessen, "Excitation beyond the monochromatic laser limit: simultaneous 3-D confocal and multiphoton microscopy with a tapered fiber as white-light laser source" J. Biomed. Opt. 10, 054009 (2005).

G. McConnell, S. Poland, and J. M. Girkin, "Fast wavelength multiplexing of a white-light supercontinuum using a digital micromirror device for improved three-dimensional fluorescence microscopy" Rev. Sci. Instrum. 77, 013702 (2006).

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging" J. Micros. Oxford 227, 203-215 (2007).

D. M. Owen, E. Auksorius, H. B. Manning, C. B. Talbot, P. A. A. de Beule, C. Dunsby, M. A. A. Neil, and P. M. W. French, "Excitationresolved hyperspectral fluorescence lifetime imaging using a UVextended supercontinuum source" Opt. Lett. 32, 3408-3410 (2007).

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, "Detection and spectroscopy of gold nanoparticles using supercontin uum white light confocal microscopy" Phys. Rev. Lett. 93, 037401 (2004).

C. J. Cogswell, D. K. Hamilton, and C. J. R. Sheppard, "Color confocal reflection microscopy using red, green and blue lasers" J. Micros. Oxford 165, 103-117 (1992).

H. Tada, S. E. Mann, I. N. Miaoulis, and P. Y. Wong, "Effects of a butterfly scale microstructure on the iridescent color observed at different angles" Appl. Opt. 37, 1579-1584 (1998).

P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, "Sculptedmultilayer optical effects in two species of Papilio butterfly" Appl. Opt. 40, 1116-1125 (2001).

T. L. Tan, D. Wong, and P. Lee, "Iridescence of a shell of mollusk Haliotis Glabra" Opt. Express 12, 4847-4854 (2004).

J. V. Sanders, "Colour of precious Opal" Nature 204, 1151-1153 (1964).

M. Akizuki, "Fractured surface of opal" Contr. Mineral. and Petrol. 28, 57-61 (1970).

I. D. Nikolov, and C. D. Ivanov, "Optical plastic refractive measurements in the visible and the near-infrared regions" Appl. Opt. 39, 2067-2070 (2000).

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis" Cytometry 43, 239-247 (2001).

C. J. R. Sheppard, and X. Q. Mao, "Confocal microscopes With slit apertures" J. Mod. Opt. 35, 1169-1185 (1988).