Journal of the European Optical Society - Rapid publications, Vol 4 (2009)

Rigorous modeling and physical interpretation of terahertz near-field imaging

Y. Li, S. Popov, A. T. Friberg, S. Sergeyev

Abstract


Apertureless scanning near-field optical microscopy (SNOM) operating with terahertz (THz) laser pulses is a subject of great research interest. The Mie scattering theory is commonly used to explain the features of the optical waves produced by field interactions with SNOM tips and microstructures. However, since Mie scattering fails with SNOMs at submillimeter wavelengths, a rigorous model and analysis are desirable to assess the feasibility of the THz tip-enhanced scanning near-field techniques. In this paper, we present a numerical simulation of an apertureless SNOM imaging system in the THz band. A 2-dimensional model based on the finite element method (FEM) is investigated and discussed. The modeling results are in good agreement with the experimental data obtained for this system at 2 THz radiation [H.-T. Chen at al., Phys. Rev. Lett. 93, 267401 (2004)]. Additionally, a physical interpretation using the antenna theory is successfully confirmed by the simulation results.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2009.09007]

Full Text: PDF

Citation Details


Cite this article

References


J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications-explosives, weapons and drugs" Semicond. Sci. Tech. 20, S266-S280 (2005).

Q. Chen, Z. Jiang, G. X. Xu, and X.-C. Zhang, "Near-field terahertz imaging with a dynamic aperture" Opt. Lett. 25, 1122-1124 (2000).

A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, "THz time domain spectroscopy of biomolecular conformational modes" Phys. Med. Biol. 47, 3739-3805 (2002).

R. H. Woodward, B. Cole, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging in reflection geometry of human skin cancer tissue" Phys. Med. Biol. 47, 3853-3863 (2002).

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy" Opt. Commun. 182, 321-328 (2000).

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution" Nature 269, 1083-1085 (1995).

G. C. Cho, H.-T. Chen, S. Kraatz, N. Karpowicz, and R. Kersting, "Apertureless terahertz near-field microscopy" Semicond. Sci. Tech. 20, S286-S292 (2005).

H.-T. Chen, S. Kraatz, G.C. Cho, and R. Kersting, "Identification of a resonant imaging process in apertureless near-field microscopy" Phys. Rev. Lett. 93, 267401:1-4 (2004).

H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution" Appl. Phys. Lett. 83, 3009-3011 (2003).

M. A. Ordal, R. J. Bell, R. W. Alexander, J. L.L. Long, and M. R. Querry, "Optical properties of Au, Ni, and Pb at submillimeter wavelengths" Appl. Optics 26, 744-752 (1987).

A. D. Rakic, A. B. Djursic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices" Appl. Optics 37, 5271-5283 (1998).

W. Nakagawa, L. Vaccaro, and H. P. Herzig, "Analysis of mode coupling due to spherical defects in ideal fully metal-coated scanning near-field optical microscope probes" J. Opt. Soc. Am. A 23, 1096- 1105 (2006).

COMSOL Inc., http://www.comsol.com

S. G. Johnson, Notes on Perfectly Matched Layers (PMLs) (Massachusetts Institute of Technology, Boston, MA, 2008).

R. Serway and J. J. Raymond, Physics for Scientists and Engineers with Modern Physics (6th edition, Thompson-Brooks/Cole, Belmont, CA, 2003).

A. J. L. Adam, N. C. J. van der Valk, and P. C. M. Planken, "Measurement and calculation of the near field of a terahertz apertureless scanning optical microscope" J. Opt. Soc. Am. B 24, 1080-1090 (2007).

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-fied optical microscopy" Appl. Phys. Lett. 85, 2715-2717 (2004).