Journal of the European Optical Society - Rapid publications, Vol 4 (2009)

Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides

C. Ciminelli, V. M. N. Passaro, F. Dell'Olio, M. N. Armenise

Abstract


A three-dimensional (3D) method for the estimation of scattering loss due to sidewalls roughness in bent optical waveguides is proposed and validated. The approach, based on Volume Current Method (VCM), has been pointed out to accurately calculate the scattering loss as dependent on curvature radius and wavelength. An exponential model has been employed to analytically describe the sidewalls roughness and a 3D mode solver based on mode-matching method has been used to calculate optical field distribution in the bent waveguide cross-section. Scattering loss suffered by two low index contrast waveguides has been investigated by the developed algorithm. For a buried InGaAsP/InP waveguide and a 6 μm x 6 μm Silica-on-Silicon guiding structure scattering loss dependence on bending radius, wavelength, roughness, correlation length and standard deviation has been investigated and discussed. Because of the different index contrast values, InGaAsP/InP waveguide exhibits a scattering loss which is quite six times larger than in Silica-on-Silicon. For both guiding structures, quasi-TM mode shows a larger scattering loss than quasi-TE one.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2009.09015]

Full Text: PDF

Citation Details


Cite this article

References


C. Ciminelli, F. Dell'Olio, C. E. Campanella, V. M. N. Passaro, and M. N. Armenise, "Integrated Optical Ring Resonators: Modelling and Technologies" in Progress in Optical Fibers, P. S. Emersone, ed. (NOVA Science Publishers, New York, 2009).

J. P. R. Lacey and F. P. Payne, "Radiation loss from planar waveguides with random wall imperfections" Pr. Inst. Electr. Elect. 137, 282-288 (1990).

F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguides" Opt. Quant. Electron. 26, 977-986 (1994).

K. K. Lee, D. R. Lim, H. C. Luan, A. Agrawal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model" Appl. Phys. Lett. 77, 1617-1619 (2000).

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides" IEEE Photonic. Tech. L. 16, 1661-1663 (2004).

C. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides" IEEE J. Sel. Top. Quant. 12, 1306-1321 (2006).

T. Barwicz and H. A. Haus, "Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides" J. Lightwave Technol. 23, 2719-2732 (2005).

B. E. Little and S. T. Chu, "Estimating surface-roughness loss and output coupling in microdisk resonators" Opt. Lett. 21, 1390-1392 (1996).

M. N. Armenise, V. M. N. Passaro, F. De Leonardis, and M. Armenise, "Modeling and Design of a Novel Miniaturized Integrated Optical Sensor for Gyroscope Applications" J. Lightwave Technol. 19, 1476-1494 (2001).

C. Ciminelli, F. Peluso, E. Armandillo, and M. N. Armenise, Modeling of a new integrated optical angular velocity sensor (Optronics Symposium (OPTRO), Paris, 8-12 May 2005).

C. Ciminelli, F. Peluso, and M. N. Armenise, "A new integrated optical angular velocity sensor" Proc. SPIE 5728, 93-100 (2007).

C. Ciminelli, F. Peluso, N. Catalano, B. Bandini, E. Armandillo, and M. N. Armenise, Integrated optical gyroscope using a passive ring resonator (5th Round Table on Micro/Nano Technologies for Space, Noordwijk, 3-5 October 2005).

C. Ciminelli, Innovative photonic technologies for gyroscope systems (EOS Topical Meeting - Photonic Devices in Space, Paris, 18-19 October 2006).

C. Ciminelli, C. E. Campanella, and M. N. Armenise, Design of passive ring resonators to be used for sensing applications 278-280 (First Mediterranean Photonics Conference, Ischia, 2008).

C. Ciminelli, C. E. Campanella, and M. N. Armenise, "Optimized Design of Integrated Optical Angular Velocity Sensors based on a Passive Ring Resonator" to be published in J. Lightwave Technol. (2009).

K. Suzuki, K. Takiguchi, and K. Hotate, "Monolithically Integrated Resonator Microoptic Gyro on Silica Planar Lightwave Circuit" J. Lightwave Technol. 18, 66-72 (2000).

H. Ma, X. Zhang, Z. Jin, and C. Ding, "Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique" Opt. Eng. 45, 080506 (2006).

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "Laterally Coupled Buried Heterostructure High-Q Ring Resonators" IEEE Photonic. Tech. L. 16, 2266-2268 (2004).

T. Barwicz, and H. I. Smith, " Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices" J. Vac. Sci. Technol. B 21, 2892-2896 (2003).

Fimmwave 4.6, Photon Design (2007).

Mathematica 7, Wolfram Research (2007).

Comsol Multiphysics 3.2, COMSOL (2005).

F. F. Soares, Photonic integrated true-time-delay beamformers in InP technology paragraph 2.3 (Ph.D thesis, Technische Universiteit Eindhoven, 2006).