Journal of the European Optical Society - Rapid publications, Vol 4 (2009)

Resonant two-beam interferometric sensor independent of intracavity losses

M. Romanelli, M. Vallet

Abstract


We study a resonant interferometric sensor with two cavity eigenstates. The finesse associated to one eigenstate is significantly lower than the empty cavity value, because of the presence of a lossy intracavity sample. We show theoretically that the sensitivity of the interferometer only depends on the empty cavity finesse when the low-finesse eigenfrequency is locked to resonance. This is experimentally demonstrated and a resolution of 60 pm is reported. Our method can be applied to any resonant two-beam interferometer.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2009.09023]

Full Text: PDF

Citation Details


Cite this article

References


M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

N. Arnaud, C. Arnault, M. Barsuglia, M-A. Bizouard, V. Brisson, F. Cavalier R. Chiche, M. Davier, C. Eder, P. Hello, P. Heusse, S. Kreckelbergh, and B. Mansoux, "The global control of the VIRGO experiment" Nucl. Instrum. Meth. A 550, 467-489 (2005).

D. Sigg, "Status of the LIGO detectors" Classical Quant. Grav. 23, S51-S56 (2006).

D. Chauvat, C. Bonnet, A. Durand, M. Vallet, and A. Le Floch, "Jamin Fabry-Perot Interferometer" Opt. Lett. 49, 126-128 (2003).

F. Bretenaker and A. Le Floch, "Laser eigenstates in the framework of a spatially generalized Jones matrix formalism" J. Opt. Soc. Am. B 8, 230-238 (1991).

A. Kastler, "Atomes a l'interieur d'un interferometre Perot-Fabry" Appl. Optics 1, 17-24 (1962).

J. Ye and T. W. Lynn, "Applications of optical cavities in modern atomic, molecular, and optical physics" Advances in Atomic, Molecular and Optical Physics, B. Bederson and H. Walther, Eds., 49, 1 (Academic, 2003).

K. L. Snyder and R. N. Zare, "Cavity ring-down spectroscopy as a detector for liquid chromatography" Anal. Chem. 75, 3086-3091 (2003).

S. T. Logunov, "Cavity ringdown detection of losses in thin films in the telecommunication wavelength window" Appl. Optics 40, 1570-1573 (2001).

G. Ropars, D. Chauvat, A. Le Floch, M. N. O'Sullivan-Hale, and R. W. Boyd, "Dynamics of gravity-induced gradients in soap film thicknesses" Appl. Phys. Lett. 88, 234104 (2006).

M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, and M. Oger, "The Malus Fabry-Perot interferometer" Opt. Commun. 68, 423-443 (1999).

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator" Appl. Phys. B 31, 97-105 (1983).

S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, "Ultralow biased widely continuously tunable Fabry-Perot filter" IEEE Photonic. Tech. L. 15, 434-436 (2003).

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, "Lasermicromachined Fabry-Perot optical fiber tip sensor for highresolution temperature-independent measurement of refractive index" Opt. Express 16, 2252-2263 (2008).