Journal of the European Optical Society - Rapid publications, Vol 4 (2009)
A study of optical solitons with Kerr and power law nonlinearities by He's variational principle
Abstract
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2009.09050]
Citation Details
Cite this article
References
A. Biswas, "Temporal 1-soliton solution of the complex Ginzburg- Landau equation with power law nonlinearity" Prog. Electromagn. Res. 96, 1-7 (2009).
J. H. He, "Variational iteration method- a kind of non-linear analytical technique: some examples" Int. J. Nonlinear Mech. 34, 699-708 (1999).
J. H. He, "Variational principles for some nonlinear partial differential equations with variable coefficients" Chaos Soliton. Fract. 99, 847-851 (2004).
R. Kohl, D. Milovic, E. Zerrad, and A. Biswas, "Optical soliton perturbation in a non-Kerr law media" Opt. Laser Technol. 40, 647-662 (2008).
R. Kohl, A. Biswas, D. Milovic, and E. Zerrad, "Optical solitons by He's variational principle in a non-Kerr law media" J. Infrared Millim. Te. 30, 526-537 (2009).
M. Mishra, and S. Konar, "High bit rate dense dispersion-managed optical communication systems with distributed amplification" Prog. Electromagn. Res. 78, 301-320 (2008).
A. K. Sarma, "Dark soliton switching in an NLDC in the presence of higher-order perturbative effects" Opt. Laser Technol. 41, 247-250 (2009).
S. Shwetanshumala, S. Jana, and S. Konar, "Propagation of a mixture of modes of a laser beam in a medium with saturable nonlinearity" J. Electromagnet. Wave. 20, 65-77 (2006).
S. Shwetanshumala, "Temporal solitons of modified complex Ginzburg-Landau Equation" Prog. Electromagn. Res. Lett. 3, 17-24 (2008).
A. M. Wazwaz, "Multiple soliton solutions for a (2+1)-dimensional integrable KdV6 equation" to appear in Commun. Nonlinear. Sci.