Journal of the European Optical Society - Rapid publications, Vol 5 (2010)

Transmission of light in crystals with different homogeneity: using Shannon index in photonic media

M. Bellingeri, S. Longhi, F. Scotognella

Abstract


Light transmission in inhomogeneous photonic media is strongly influenced by the distribution of the diffractive elements in the medium. Here it is shown theoretically that, in a pillar photonic crystal structure, light transmission and homogeneity of the pillar distribution are correlated by a simple linear law once the grade of homogeneity of the photonic structure is measured by the Shannon index, widely employed in statistics, ecology and information entropy. The statistical analysis shows that the transmission of light in such media depends linearly from their homogeneity: the more is homogeneous the structure, the more is the light transmitted. With the found linear relationship it is possible to predict the transmission of light in random photonic structures. The result can be useful for the study of electron transport in solids, since the similarity with light in photonic media, but also for the engineering of scattering layers for the entrapping of light to be coupled with photovoltaic devices.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2010.10041]

Full Text: PDF

Citation Details


Cite this article

References


D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of Light in a Disordered Medium" Nature 390, 671-673 (1997).

D. S. Wiersma, R. Sapienza, S. Mujumdar, M. Colocci, M. Ghulinyan, and L. Pavesi, "Optics of Nanostructured Dielectrics" J. Opt. A: Pure Appl. Opt. 7, S190-S197 (2005).

F. Scheffold, and G. Maret, "Universal Conductance Fluctuations of Light" Phys. Rev. Lett. 81, 5800-5803 (1998).

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics" Phys. Rev. Lett. 58, 2059-2062 (1987).

S. John, "Strong localization of photons in certain disordered dielectric superlattices" Phys. Rev. Lett. 58, 2486-2489 (1987).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: molding the flow of light (Princeton University Press, Princeton, NJ, 1995).

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, "Stacking the Nanochemistry Deck: Structural and Compositional Diversity in One-Dimensional Photonic Crystals" Adv. Mater. 21, 1641-1646 (2009).

C. Lopez, "Materials Aspects in Photonic Crystals" Adv. Mater. 15, 1679-1704 (2003).

J. E. G. J. Wijnhoven, and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania" Science 281, 802-804 (1998).

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser" Science 284, 1819-1821 (1999).

F. Scotognella, D. P. Puzzo, A. Monguzzi, D. S. Wiersma, D. Maschke, R. Tubino, and G. A. Ozin, "Nanoparticle One- Dimensional Photonic-Crystal Dye Laser" Small 5, 2048-2052 (2009).

A. Mekis, J. C. Chen, J. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides" Phys. Rev. Lett. 77, 3787-2790 (1996).

J. Serbin, and M. Gu, "Experimental evidence for superprism effects in three-dimensional polymer photonic crystals" Adv. Mater. 18, 221-224 (2006).

V. Morandi, F. Marabelli, V. Amendola, M. Meneghetti, and D. Comoretto, "Colloidal photonic crystals doped with gold nanoparticles: Spectroscopy and optical switching properties" Adv. Funct. Mater. 17, 2779-2786 (2007).

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll (eds.), Photonic Crystals: Advances in Design, Fabrication and Characterization (Wiley, Weinheim, 2004).

W. Axmann, and P. Kuchment, "An efficient finite element method for computing spectra of photonic and acoustic band-gap materials - I. Scalar case" J. Comput. Phys. 150, 468-481 (1999).

D. C. Dobson, "An efficient method for band structure calculations in 2D photonic crystals" J. Comput. Phys. 149, 363-376 (1999).

S. G. Johnson, and J. D. Joannopoulos, "Block-iterative frequencydomain methods for Maxwell's equations in a planewave basis" Opt. Express 8, 173-190 (2001).

M. Ghulinyan, C. J. Oton, L. Dal Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, "Light-Pulse Propagation in Fibonacci Quasicrystals" Phys. Rev. B 71, 094204 (2005).

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, "A Lévy Flight for Light" Nature 453, 495-498 (2008).

C. E. Shannon, "A mathematical theory of communication" Bell Syst. Tech. J. 27, 379-423 (1948).

W. Weaver, and C. E. Shannon, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949).

C. Krebs, Ecological Methodology (HarperCollins, New York, 1989).

J. A. Ludwig, and J. F. Reynolds, Statistical ecology: a primer of methods and computing (John Wiley and Sons, New York, 1998) [25] C. S. Lien, Physics of Optoelectronic Devices (John Wiley and Sons, New York, 1995).

R. Albert, and A. L. Barabási, "Statistical Mechanics of Complex Networks" Rev. Mod. Phys. 74, 47-97 (2002).

C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, "Nanocrystalline titanium oxide electrodes for photovoltaic applications" J. Am. Ceram. Soc. 80, 3157- 3171 (1997).

R. C. Polson, and Z. V. Vardeny, "Random Lasing in Human Tissues" Appl. Phys. Lett. 85, 1289-1291 (2004).