Journal of the European Optical Society - Rapid publications, Vol 5 (2010)

Switchable photonic crystal cavity by liquid crystal infiltration

P.-Y. Baroni, Q. Tan, V. Paeder, A. Cosentino, M. Roussey, T. Scharf, H. P. Herzig, W. Nakagawa

Abstract


We report on the fabrication and optical characterization of a switchable photonic crystal nanocavity actuated by liquid crystals. This device acts as a filter presenting a transmission peak around the telecom wavelength λ = 1550 nm. Passing from the isotropic to the anisotropic (oriented crystals) state of the liquid crystals, a shift of Δλ =13 nm has been measured, which confirms the theoretical predictions obtained by finite difference time domain simulations. We have developed a photonic crystal nanocavity that can be tuned thanks to the properties of liquid crystals infiltrated in the holes of the photonic device.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2010.10057]

Full Text: PDF

Citation Details


Cite this article

References


E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics" Phys. Rev. Lett. 58, 2059-2062 (1987).

S. John, "Strong localization of photons in certain disordered dielectric superlattices" Phys. Rev. Lett. 58, 2486-2489 (1987).

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, "Photonic crystal optical filter based on contra-directional waveguide coupling" Appl. Phys. Lett. 83, 5121- 5123 (2003).

L. Fekete, F. Kadlec, P. Kuzel, and H. Nemec, "Ultrafast optoterahertz photonic crystal modulator" Opt. Lett. 32, 680-682 (2007).

L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, "High speed silicon photonic crystal waveguide modulator for low voltage operation" Appl. Phys. Lett. 90, 071105 (2007).

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, "80-micron interaction length silicon photonic crystal waveguide modulator" Appl. Phys. Lett. 87, 221105 (2005).

D. Beggs, T. White, L. Cairns, L. O'Faolain, and T. Krauss, "Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler" Physica E 41, 1111-1114 (2009).

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals" Phys. Rev. B 58, R10096 (1998).

J. Amet, F. Baida, G. Burr, and M.-P. Bernal, "The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching" Photonic. Nanostruct. 6, 47-59 (2008).

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, "Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications" Appl. Phys. Lett. 93, 261103 (2008).

M. M. de Lima Jr, and P. V. Santos, "Modulation of photonic structures by surface acoustic waves" Rep. Prog. Phys. 68, 1639-1701 (2005).

M. Roussey, F. I. Baida, and M.-P. Bernal, "Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal" J. Opt. Soc. Am. A 24, 1416-1422 (2007).

E. Camargo, H. Chong, and R. De La Rue, "2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure" Opt. Express 12, 588-592 (2004).

H. H. J. E. Kicken, P. F. A. Alkemade, R. W. van der Heijden, F. Karouta, R. Nötzel, E. van der Drift, and H. W. M. Salemink, "Wavelength tuning of planar photoniccrystals by local processing of individualholes" Opt. Express 17, 22005-22011 (2009).

H.-S. Kitzerow, A. Lorenz, and H. Matthias, "Tuneable photonic crystals obtained by liquid crystal infiltration" Phys. Status Solidi A 204, 3754-3767 (2007).

H. Graener, A. Abdolvand, S. Wackerow, O. Kiriyenko, and W. Hergert, "Optical properties of photonic/plasmonic structures in nanocomposite glass" Phys. Status Solidi A 204, 3838-3847 (2007).

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Liquid crystal infiltration of InP-based planar photonic crystals" J. Appl. Phys. 99, 103105 (2006).

K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment technologies and applications of liquid crystal devices (Taylor & Francis, London, 2005).

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, "Temperature dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range" J. Appl. Phys. 103, 093523 (2008).

T. Scharf, Polarized light in liquid crystals and polymers (Wiley Interscience, USA, 2006).