Journal of the European Optical Society - Rapid publications, Vol 6 (2011)

Fluorescence quenching and photobleaching in Au/Rh6G nanoassemblies: impact of competition between radiative and non-radiative decay

L. Dong, F. Ye, J. Hu, S. Popov, A. T. Friberg, M. Muhammed

Abstract


Fluorescence quenching from nanoassemblies formed by Rhodamine 6G and gold nanoparticles (Au NPs) of 2.6 nm radius has been investigated. The presence of Au NPs also induces long-term degradation of the photostability (photobleaching) of Rhodamine 6G used as gain medium in a Fabry-Perot laser cavity. We found that the degradation gets profound when the Au NPs concentration is significantly increased. Calculation of the radiative rate and direct time-resolved measurement of the fluorescence decay indicates that both the decrease of radiative decay rate and increase of non-radiative decay rate are responsible for the fluorescence quenching and photostability degradation. An energy transfer from the dye molecules to gold nanoparticles is dominating within the small distance between them and suppresses the quantum efficiency of Rhodamine 6G drastically. In long time scale, the photobleaching rate was slowing down, and laser output intensity reached a stabilized level which depends on the gold nanoparticles concentration.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2011.11019]

Full Text: PDF

Citation Details


Cite this article

References


J. Zhang, Y. Fu, and J. R. Lakowicz, "Emission behavior of fluores- cently labeled silver nanoshell: enhanced self-quenching by metal nanostructure" J. Phys. Chem. C 111, 1955-1961 (2007).

T. Uwada, R. Toyota, H. Masuhara, and T. Asahi, "Single particle spectroscopic investigation on the interaction between exciton transition of cyanine dye J-aggregates and localized surface plasmon polarization of gold nanoparticles", J. Phys. Chem. C 111, 1549-1552 (2007).

M. Fukushima, H. Yanagi, S. Hayashi, N. Suganuma, and Y. Taniguchi, "Fabrication of gold nanoparticles and their influence on optical properties of dye-doped sol-gel films" Thin Solid Films 438-439, 39-43 (2003).

M. De, P. S. Ghosh, and V. M. Rotello, "Applications of nanoparti- cles in biology" Adv. Mater. 20, 4225-4241 (2008).

T. Nakamura, and S. Hayashi, "Enhancement of dye fluorescence by gold nanoparticles: analysis of particle size dependence" Jpn. J. Appl. Phys. 44, 6833-6837 (2005).

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feld- mann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reihoudt, M. Moller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative ef- fects" Phys. Rev. Lett. 89, 203002-203005 (2002).

T. Sen, S. Sadhu, and A. Patra, "Surface energy transfer from Rhodamine 6G to gold nanoparticles: a spectroscopic ruler" Appl. Phys. Lett. 91, 043104-043104-3 (2007).

J. M. Friedman, and R. M. Hochstrasser, "The use of fluorescence quenchers in resonance Raman spectroscopy" Chem. Phys. Lett. 33, 225-227 (1975).

M. Zorn, S. A. L. Weber, M. N. Tahir, W. Tremel, H.-J. Butt, R. Berger, and R. Zentel, "Light induced charging of polymer functionalized nanorods" Nano Lett. 210, 2812-2816 (2010).

B. Karthikeyan, "Fluorescence quenching of Rhodamine-6G in Au nanocomposite polymers" J. Appl. Phys 108, 084311-084311-5 (2010).

J. Zhu, K. Zhu, and L. Huang, "Using gold colloid nanoparticles to modulate the surface enhanced fluorescence of Rhodamine B" Phys. Lett. A 372, 3283-3288 (2008).

H. Vallhov, J. Qin, S. M. Johansson, N. Ahlborg, M. Muhammed, A. Scheynius, and S. Gabrielsson, "The importance of an endotoxin- free environment during the production of nanoparticles used in medical applications" Nano Lett. 6, 1682-1686 (2006).

F. Ye, H. Vallhov, J. Qin, E. Daskalaki, A. Sugunan, M. S. Toprak, A. Fornara, S. Gabrielsson, A. Scheynius, and M. Muhammed, "Synthesis of high aspect ratio gold nanorods and their effects on human antigen presenting dendritic cells" Int. J. Nanotechnol. In press. [14] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, "Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system" J. Chem. Soc., Chem. Commun. 801-802 (1994).

J. R. Lakowicz, "Radiative decay engineering: biophysical and biomedical applications" Analytical Biochemistry 298, 1-24 (2001).

J. Gersten, and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles", J. Chem. Phys. 75, 1139-1152 (1981).

M. A. Noginov, M. Vondrova, S. N. Williams, M. Bahoura, V. I. Gavrilenko, S. M. Black, V. P. Drachev, V. M. Shalaev, and A. Sykes, "Spectroscopic studies of liquid solutions of R6G laser dye and Ag nanoparticle aggregates" J. Opt. A: Pure Appl. Opt. 7, S219 -S229 (2005).

E. C. Le Ru, and P. G. Etchegoin, Principle of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Oxford, 2009).

K. A. Selanger, J. Falnes, and T. Sikkeland, "Fluorescence lifetime studies of Rhodamine 6G in methanol", J. Phys. Chem. 81, 1960- 1963 (1977).