Journal of the European Optical Society - Rapid publications, Vol 6 (2011)

Optical forces and trapping potentials of a dual-waveguide trap based on multimode solid-core waveguides

M. M. van Leest, F. Bernal Arango, J. Caro

Abstract


We propose a novel design of the dual-waveguide trap for trapping and Raman identification of microscopic particles and biological objects in a fluid. The device is based on two embedded Si3N4 waveguides launching counterpropagating beams into the fluidic channel of a lab-on-chip. For waveguides with a square cross-section of 1 μm2, a 5 μm gap between them and a 785 nm operation wavelength, we perform finite-difference time-domain simulations of the beam profiles and the trapping forces acting on polystyrene beads (diameter 0.2-1.4 μm). The forces reach values up to 16 pN/W for a bead diameter of 1.4 μm, indicating that the trap is very suitable for trapping of particles in a fluidic environment. This is confirmed by the trapping potentials deduced from the force curves. The design of waveguides and chip is completely compatible with glass-based microfluidic technology, thus enabling mass production and widespead application, contrary to previous approaches.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2011.11022]

Full Text: PDF

Citation Details


Cite this article

References


X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review" Anal. Chim. Acta 620, 8-26 (2008).

C. Xie, J. Mace, M. A. Dinno, Y. Q. Li, W. Tang, R. J. Newton, and P. J. Gemperline, "Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy" Anal. Chem. 77, 4390-4397 (2005).

A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure" Phys. Rev. Lett. 24, 156 (1970).

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap" Opt. Lett. 18, 1867-1869 (1993).

C. Jensen-McMullin, H. P Lee, and E. R. Lyons, "Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap", Opt. Express 13, 2634-2642 (2005).

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells" Opt. Express 14, 5779-5791 (2006).

S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, "Optofluidic particle concentration by a long-range dual-beam trap" Opt. Lett. 34, 2306-2308 (2009).

This Fig. follows from M _ (_/4)(2w/_)2(n2Si3N4 _ n2SiO2)1/2, the approximate number of modes per polarization direction for this cladded rectangular waveguide, as derived in the ray picture of waveguide modes. See for example: B. E. A. Saleh, and M. C. Teich, Fundamentals of IhotonIcs (Wiley, New York, 1991).

C. Pollock, and M. Lipson, Integrated Photonics (Kluwer Academic Publishers, Boston/Dordrecht/London, 2003).

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopou- los, and S. G. Johnson, "Meep: A flexible free-software package for electromagnetic simulations by the FDTD method" Comput. Phys. Commun. 3, 687-702 (2010).

R. Ulrich, and T. Kamiya, "Resolution of self-images in planar op- tical waveguides" J. Opt. Soc. Am. 68, 583-592 (1978).

A. H. J. Yang, and D. Erickson, "Stability analysis of optoflu- idic transport on solid-core waveguiding structures" Nanotechnol- ogy 19, 1-10 (2008).

I.Bloch,"Ultracoldquantumgasesinopticallattices"Nat.Phys.1, 23-30 (2005).

P. Zemánek, A. Jonás, and M. Liska, "Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave" J. Opt. Soc. Am. A 19, 1025-1034 (2002).

A. Askin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, "Observation of single-beam gradient force optical trap for dielectric particles" Opt. Lett. 11, 288-290 (1986).

F. Sun, A. Driessen and K. Wörhoff, "High performance optical waveguides based on boron and phosphorous doped silicon oxyni- tride" Proc. SPIE 7604, 760403 (2010).

R. G. Heideman, A. Melloni , M. Hoekman , A. Leinse, and F. Morichetti, "Low loss, high contrast optical waveguides based on CMOS compatible LPCVD processing: technology and experi- mental results" in Proceedings IEEE/LEOS Benelux ChaIter, 71-74 (IEEE, Mons, 2005).