Journal of the European Optical Society - Rapid publications, Vol 6 (2011)

Reduction of global interference in functional multidistance near-infrared spectroscopy using empirical mode decomposition and recursive least squares: a Monte Carlo study

Y. Zhang, J. Sun, P. Rolfe

Abstract


Functional near-infrared spectroscopy (fNIRS) is a sensitive technique that has the potential to detect haemodynamic changes during the performance of specific activation tasks. However, in real situations, fNIRS recordings are often corrupted by physiological phenomena, especially by cardiac contraction, breathing and blood pressure fluctuations, and these forms of interference can severely limit the utility of fNIRS. We present a novel fNIRS enhancement based on the multidistance fNIRS method with short-distance and long-distance optode pairs. With this method empirical mode decomposition (EMD) is applied to decompose the superficial haemodynamic changes, derived from the short-distance fNIRS measurements, into a series of intrinsic mode functions (IMFs). By utilizing the weighting parameters for the IMFs, we perform an estimation for global interference in the desired haemodynamic changes, derived from the long-distance fNIRS measurements. We recover the evoked brain activity by minimizing least squares between the desired haemodynamic changes and the estimated global interference. To accelerate the computation, we adopt the recursive least squares (RLS) to decrease the computation complexity due to the matrix inversion. Monte Carlo simulations based on a five-layered slab model of a human adult head was implemented to evaluate our methodology. The results demonstrate that the EMD-RLS method can effectively remove contamination from the evoked brain activity.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2011.11033]

Full Text: PDF

Citation Details


Cite this article

References


F. F. Jöbsis, "Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters" Science 198, 1264-1267 (1977).

B. Montcel, R. Chabrier, and P Poulet, "Detection of cortical activation with time-resolved diffuse optical methods" Appl. Optics 44, 1942-1947 (2005).

S. Schmidt, C. M. Schwärzler, F. Sierra, M. Meyer-Wittkopf, and P. Rolfe, "Blood volume changes and oxygenation during labor- a laser spectroscopic analysis" Z. Geburtsh. Neonatol. 205, 33-37 (2001).

P. A. Rea, J. Crowe, Y. Wickramasinghe, and P. Rolfe, "Non-invasive optical methods for the study of cerebral metabolism in the human newborn: a technique for the future?" J. Med. Eng. Technol. 9, 160-166 (1985).

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, "Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults" NeuroImage 12, 623-639 (2000).

L. F. Leonardo, D. M. Hueber, and T. J. Barstow, "Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise" J. Appl. Physiol. 102, 358-367 (2007).

G. Strangman, D. A. Bois, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light" Biol. Psychiat. 52, 679-693 (2002).

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging" Phys. Med. Biol. 50, R1-R43 (2005).

T. S. Leung, C. E. Elwell, and D. T. Delpy, "Estimation of cerebral oxy- and deoxy-haemoglobin concentration changes in a layered adult head model using near-infrared spectroscopy and multivariate statistical analysis" Phys. Med. Biol. 50, 5783-5798 (2005).

S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, "Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis" J. Biomed. Opt. 12, 062111 (2007).

Y. H. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, "Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging" J. Biomed. Opt. 10, 011014 (2005).

G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, "Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near infrared spectroscopy" NeuroImage 20, 479-488 (2003).

R. B. Saager and A. J. Berger, "Direct characterization and removal of interfering absorption trends in two-layer turbid media" J. Opt. Soc. Am. A 22, 1874-1882 (2005).

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, "Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis" Med. Biol. Eng. Comput. 42, 92-99 (2004).

Q. Zhang, E. N. Brown, and G. E. Strangman, "Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study" J. Biomed. Opt. 12, 044014 (2007).

S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, and S. R. Arridge, "Time-series estimation of biological factors in optical diffusion tomography" Phys. Med. Biol. 48, 1491-1504 (2003).

S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, "Physiological system identification with the Kalman filter in diffuse optical tomography" Med. Image Comput. Comput. Assist Interv. 8, 649-656 (2005).

A. F. Abdelnour and T. Huppert, "Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model" NeuroImage 46, 133-143 (2009).

Y. Zhang, J. W. Sun, and P. Rolfe, "Monte Carlo study for physiological interference reduction in near-infrared spectroscopy based on Empirical Mode Decomposition" J. Mod. Optic. 57, 2159-2169 (2010).

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis" Proc. R. Soc. Lond. Ser-A 454, 903-995 (1998).

P. Rolfe, "In vivo near-infrared spectroscopy" Annu. Rev. Biomed. Eng. 2, 715-754 (2000).

R. Saager and A. Berger, "Measurement of layer-like hemodynamic trends in scalp and cortex: implementations for physiological baseline suppression in functional near-infrared spectroscopy" J. Biomed. Opt. 13, 034017 (2008).

P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, Springer Science + Business Media, LLC, New York (2008).

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues" Comput. Meth. Prog. Bio. 47, 131-146 (1995).

E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal" Appl. Optics 42, 2915-2922 (2003).

S. Umeyama and T. Yamada, "Monte Carlo study of global interference cancellation by multidistance measurement of near-infrared spectroscopy" J. Biomed. Opt. 14, 064025 (2009).

N. Okui and E. Okada, "Wavelength dependence of crosstalk in dual wavelength measurement of oxy- and deoxy-hemoglobin" J. Biomed. Opt. 10, 011015 (2005).

T. Yamada, S. Umeyama, and K. Matsuda, "Multidistance probe arrangement to eliminate artifacts in functional near-infrared spectroscopy" J. Biomed. Opt. 14, 064034 (2009).

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, "Performance comparison of several published tissue near-infrared spectroscopy algorithms" Anal. Biochem. 227, 54-68 (1995).

M. S. Cohen, "Real-time functional magnetic resonance imaging" Methods 25, 201-220 (2001).

C. E. Elwell, R. Springett, E. Hillman, and D. T. Delpy, "Oscillations in cerebral haemodynamics. Implications for functional activation studies" Adv. Exp. Med. Biol. 471, 57-65 (1999).

T. Müller, J. Timmer, M. Reinhard, E. Oehm, and A. Hetzel, "Detection of very low-frequency oscillations of cerebral haemodynamics is influenced by data detrending" Med. Biol. Eng. Comput. 41, 69-74 (2003).

F. Scholkmann, S. Spichtig, T. Muehlemann, and M. Wolf, "How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation" Physiol. Meas. 31, 649-662 (2010).

Y. Yamashita, A. Maki, and H. Koizumi, "Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy-, and total-hemoglobin concentration" Med. Phys. 28, 1108-1114 (2001).

S.S. Long, T. B. Zhang, and F. Long, "Causes and solutions of overshoot and undershoot and end swing in Hilbert-Huang transform" Acta Seismologica Sinica 18, 602-610 (2005).

S. R. Qin and Y. M. Zhong, "A new envelope algorithm of Hilbert- Huang Transform" Mech. Syst. Signal Pr. 20, 1941-1952 (2006).

Z. P. Fan, T. S. Hong, Z. Z. Liu, and Z. Z. Jing, "Improve the Envelope of EMD with Piecewise Linear Fractal Interpolation" Key Eng. Mat. 439-440, 390-395 (2010).

H. Li, H. H. Hao, and Y.L. Sun, "Improved algorithm for empirical mode decomposition with independent elements" J. Harbin Inst. Tech. 41, 245-248 (2009).

L. Zhao, X. F. Liu, S. R. Qin, P. H. Ju, and F. Zhao, "Use of masking signal to improve empirical mode decomposition" J. Vib. Shock 29, 13-17 (2010).

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging" Psychophysiology 40, 548-560 (2003).

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, "Diffuse optical imaging of the whole head" J. Biomed. Opt. 11, 054007 (2006).