Journal of the European Optical Society - Rapid publications, Vol 6 (2011)

Dispersion management in nonlinear photonic crystal fibres with nanostructured core

R. Buczynski, D. Pysz, R. Stepien, R. Kasztelanic, I. Kujawa, M. Franczyk, A. Filipkowski, A. J. Waddie, M. R. Taghizadeh

Abstract


The subwavelength structure of the core of a photonic crystal fibre can modify its dispersion characteristic and significantly shift the zero dispersion wavelength. The dispersion properties of photonic crystal fibres with core structures made of a 2D lattice of subwavelength air holes and various glass inclusions are studied. We show that a modification of the core structure can give flat dispersion over a range of over 300 nm and can shift the zero dispersion wavelength over 700 nm while the core diameter and photonic cladding remain unchanged. The developed photonic crystal fibre with nanorod core has successfully demonstrated supercontinuum generation in NIR.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2011.11038]

Full Text: PDF

Citation Details


Cite this article

References


J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber", Rev. Mod. Phys. 78, 1135-1184 (2006).

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, " Supercontinuum generation up to 2.5 _m in photonic crystal fiber made of lead-bismuth-galate glass", Laser Phys. Lett. 7, 666-672 (2010).

X. Yu, P. Shum, N. Q. Ngo, W. J. Tong, J. Luo, G. B. Ren, Y. D. Gong, and J. Q. Zhou, "Silica-Based Nanostructure Core Fiber", IEEE Photonic Tech. L. 31, 1480 - 1482, (2007).

A. Wang A. George, J. Liu, J. Knight, "Highly birefringent lamellar core fiber", Opt. Express 13, 5988-5993 (2005).

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, "Microstructured fibers with highly nonlinear materials", Opt. Quant. Electron. 39, 1057-1069 (2007).

K. Saitoh, N. Florous, and M. Koshiba, "Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses", Opt. Express 13, 8365-8371 (2005).

B. Kibler, P.-A. Lacourt, F. Courvoisier, and J.M. Dudley, "Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect", Electron Lett. 43, 967-968 (2007).

G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fibre with a subwavelength air core", Nat. Photonics 1, 115-118 (2007).

Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, "Light confinement within nanoholes in nanostructured optical fibers", Opt. Express 18, 26018-26026 (2010).

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-F. Li, L. Chai, C.-Y. Wang, W. Tong, J. Luo, A. A. Voronin, A. M. Zheltikov, "Stabilized soliton selffrequency shift and 0.1- PHz sideband generation in a photoniccrystal fiber with an air-hole-modified core", Opt. Express 16, 14987-14996 (2008).

B. Ung, M. Skorobogatiy, "Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared", Opt. Express 18, 8647- 8659 (2010).

COMSOL Multiphysics 3.4 (2007) comsol.com.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, D. Velic, "Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers", Appl. Phys. B - Lasers O. 93, 531 (2008).

R. Buczynski, D. Pysz, R. Stepien, A.J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, M.R. Taghizadeh, "Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass", Laser Phys. Lett. 8, 443-448 (2011).

S. V. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, "Small core optical waveguides are more nonlinear than expected: experimental confirmation", Opt. Lett. 34, 3577-3579 (2009).

J. C. Travers, M. H. Frosz, and J. M. Dudley, "Nonlinear fibre optics overview" (Chap. 3) in Supercontinuum generation in optical fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University Press, 2010)