Journal of the European Optical Society - Rapid publications, Vol 6 (2011)

Discontinuous space variant sub-wavelength structures for generating radially polarized light in visible region

Z. Ghadyani, S. Dmitriev, N. Lindlein, G. Leuchs, O. Rusina, I. Harder

Abstract


A discontinuous space variant sub-wavelength dielectric grating is designed and fabricated for generating radially polarized light in visible region (λ = 632.8 nm). The design is based on sub-wavelength silicon nitride structures introducing a retardation of π/2 by form birefringence, with space variant orientation of the optical axis. The pattern is divided into concentric ring segments with constant structural parameters, therefore reducing electron-beam writing time significantly. The design avoids the technological challenges encountered in the generation of a continuous space variant grating while maintaining good quality of the resulting polarization mode.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2011.11041]

Full Text: PDF

Citation Details


Cite this article

References


S. Quabis, R. Dorn, M. Eberler, O. Gloeckl, and G. Leuchs, "Focusing light to a tighter spot", Opt. Commun. 179, 1455-1461 (2000).

R. Dorn, S. Quabis, and G. Leuchs, "Sharper Focus for a Radially Polarized Light Beam", Phys. Rev. Lett. 91, 233901 (2003).

Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization", Opt. Express 12, 3377-3382 (2004).

V. G. Niziev and V. Nesterov, "Influence of beam polarization on laser cutting efficiency", J. Phys. D. Appl. Phys.32, 1455-1461 (1999).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Spinger-Verlag, 1988).

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, "On the experimental investigation of the electric and magnetic response of a single nano-structure", Opt. Express 18, 10905-10923 (2010).

S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically", Appl. Opt. 29, 2234-2239 (1990).

R. Yamaguchi, T. Nose, and S. Sato, "Liquid Crystal Polarizers with Axially Symmetrical Properties", Jpn. J. Appl. Phys. 28, 1730-+ (1989).

S. Quabis, R. Dorn, and G. Leuchs, "Generation of a radially polarized doughnut mode of high quality", Appl. Phys. B - Lasers O. 81, 597-600 (2005).

Z. Ghadyani, I. Vartiainen, I. Harder, W. Iff, A. Berger, N. Lindlein, and M. Kuittinen, "Concentric ring metal grating for generating radially polarized light", Appl. Opt. 50, 2451-2457 (2011).

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings", Opt. Lett. 27, (2002).

U. Levy, C. Tsai, L. Pang, and Y. Fainman, "Engineering spacevariant inhomogeneous media for polarization control", Opt. Lett. 29, 1718-1720 (2004).

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum", Phil. Mag. 4, 396-402 (1902).

G. M. Lerman and U. Levy, "Generation of radially polarized light beam using space-variant subwavelength gratings at 1064 nm", Opt. Lett. 33, 2782-2784 (2008).

D. C. Flanders, "Submicrometer periodicity gratings as artificial anisotropic dielectrics", Appl. Phys. Lett. 6, 492-494 (1983).

T. Baak, "Silicon oxynitride; a material for GRIN optics", Appl. Optics 21, 1069-1072 (1982).

M. Neviere, Light propagation in periodic media (Marcel Dekker, 2003).

D. H. Goldstein, Polarized Light (Marcel Dekker, 2003).

E. A. Lee and D. G. Messerschmidt (eds.), Digital Communication, 2nd edn. (Kluwer Academic, Boston, MA, 1994).