Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

Four-Wave-Mixing in Zirconia-Yttria-Aluminum Erbium Codoped Silica Fiber

H. Ahmad, M. C. Paul, N. A. Awang, S. W. Harun, M. Pal, K. Thambiratnam

Abstract


The generation and characterization of the Four-Wave-Mixing (FWM) effect in an Erbium Doped Zirconia-Yttria-Alumino Silicate Fiber (EDZF) is described. The EZDF is fabricated from a conventional silica preform by Modified Chemical Vapour Deposition (MCVD) and also solution doping to add glass modifiers and nucleating agents, with the resulting preform annealed and drawn into a fiber strand with a 125 ± 0.5 µm diameter. A 4 m long EZDF with a propagation loss of 0.68 dB/m and an erbium concentration of 3000 ppm is used to investigate the FWM effect. The FWM power levels are measured to be approximately - 45 dBm at a region of 1565 nm and show good agreement with the theoretical predicted values. A non-linear coefficient of 14 W-1km-1 is also measured, along with chromatic and slope dispersion values of 28.45 ps/nm.km and 3.63 ps/nm2.km, which agree with the predicted values. The fabricated EZDF has many potential applications utilizing the FWM effect, including the generation of multi-wavelength outputs.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12011]

Full Text: PDF

Citation Details


Cite this article

References


G. E. Keiser, "A Review of WDM Technology and Applications," Opt. Fiber Technol. 5, 3-39 (1999).

M. Wasfi, "Optical Fiber Amplifiers - Review," Int. J. Comm. Netw. Infor. Sec. 1, 42-47 (2009).

H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, and S. W. Harun, "17-channels S band multiwavelength Brillouin/Erbium Fiber Laser Co-Pump with Raman source," Laser Phys. 19, 2188-2193 (2009).

D. Richardson, J. Nilsson, and W. Clarkson, "High Power Fiber Lasers: Current Status and Future Perspectives (Invited)," J. Opt. Soc. Am. B 27, 63-92 (2010).

K. Inoue, and H. Toba, "Wavelength Conversion Experiment using Fiber Four-Wave Mixing," IEEE Photonic. Tech. L. 4, 69-72 (1992).

E. Yahel, and A. Hardy, "Amplified Spontaneous Emission in High-Power, Er3+.Yb3+ Codoped Fiber Amplifiers for Wavelength- Division-Multiplexing Applications," J. Opt. Soc. Am. B 20, 1198-1203 (2003).

D. Cotter, and A. D. Ellis, "Asynchronous Digital Optical Regeneration and Networks," J. Lightwave Technol. 16, 2068-2080 (1998).

S. Abbott, "Review of 20 Years of Undersea Optical Fiber Transmission System Development and Deployment since TAT-8," in Proceedings to Optical Communication, 2008. ECOC 2008. 34th European Conference on, 1-4 (ECOC, Brussel, 2008).

K. Rottwitt, and J. H. Povlsen, "Analysing the Fundamental Properties of Raman Amplifiers in Optical Fibers," J. Lightwave Technol. 23, 3597-3613 (2005).

J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, and S. B. Lee, "A Detailed Experimental Study on Single Pump Raman/EDFA Hybrid Amplifiers: Static, Dynamic, and System Performance Comparison," J. Lightwave Technol. 23, 3848 (2005).

P. Doussiere, A. Jourdan, G. Soulage, P. Garabedian, C. Graver, T. Fillion, E. Derouin, and D. Leclerc, "Clamped Gain Travelling Wave Semiconductor Optical Amplifier for Wavelength Division Multiplexing Applications," in Proceedings to Semiconductor Laser Conference, 1994., 14th IEEE International, 185-186 (IEEE, Maui, 1994).

K. Morito, "Output-Level Control of Semiconductor Optical Amplifier by External Light Injection," J. Lightwave Technol. 23, 4332-4341 (2005).

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, "Fiber-optical parametric amplifier with 70-dB gain," IEEE Photonic. Tech. L. 18, 1194-1196 (2006).

J. M. Chavez Boggio, P. Dainese, F. Karlsson, and H. L. Fragnito, "Broad-Band 88% Efficient Two-Pump Fiber Optical Parametric Amplifier," IEEE Photonic. Tech. L. 15, 1528-1530 (2003).

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain Characteristics of Tellurite-Based Erbium-Doped Fiber Amplifiers for 1.5- m Broadband Amplification," Opt. Lett. 23, 274 (1998).

S. Jiang, B.-C. Hwang, T. Luo, K. Seneschal, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, "Net Gain of 15.5 dB from a 5.1 cm-Long Er3+ Doped Phosphate Glass Fiber," in Proceedings to Optical Fiber Communications, PD5-1 (IEEE, Baltimore, 2000).

A. Cucinotta, F. Poli, and S. Selleri, "Design of Erbium-Doped Triangular Photonic-Crystal-Fiber-Based Amplifiers," IEEE Photonic. Tech. L. 16, 2027 (2004).

S. Aozasa, H. Masuda, and M. Shimizu, "S-band Thulium-Doped Fiber Amplifier Employing High Thulium Concentration Doping Technique," J. Lightwave Technol. 24, 3842-3848 (2006).

S. W. Harun, N. Tamchek, S. Shahi, and H. Ahmad, "L-band Amplification and Multi-Wavelength Lasing with Bismuth-Based Erbium Doped Fiber," Prog. Electromagn. Res. 6, 1-12, (2009).

S. D. Emami, P. Hajireza, F. Abd-Rahman, H. A. Abdul-Rashid, H. Ahmad, and S. W. Harun, "Wide-Band Hybrid Amplifier Operating in S-Band Region," Prog. Electromagn. Res. 102, 301-313 (2010).

E. Snoeks, P. G. Kik, and A. Polman, "Concentration Quenching in Erbium Implanted Alkali Silicate Glass," Opt. Mater. 5, 159 (1996).

D. M. Gill, L. McCaughan, and J. C. Wright, "Spectroscopic Site Determinations in Erbium-Doped Lithium Niobate," Phys. Rev. B 53, 2334 (1996).

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, "Wideband EDFA Based on Erbium Doped Crystalline Zirconia Yttria Alumino Silicate Fiber," J. Lightwave Technol. 28, 2919-2924 (2011).

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, "Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers," Opt. Lett. 35, 2882-2884 (2010).

J. R. Armitage, "Spectral Dependence of the Small-Signal Gain around 1.5 m in Erbium Doped Silica Fiber Amplifiers," IEEE J. Quantum Electron. 26, 423-425 (1990).

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, "The design of erbium-doped fiber amplifiers," J. Lightwave Technol. 9, 1105-1112 (1991).

J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, "Spectroscopic Properties and Thermal Stability of Erbium-Doped Bismuth-Based Glass for Optical Amplifier," J. Appl. Phys. 93, 977-983 (2003).

P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, "Theoretical Modelling of S-band Thulium-Doped Silica Fibre Amplifiers," Opt. Quant. Electron 36, 201-212 (2004).

K. Kikuchi, and C. Lorattanasane, "Design of Highly Efficient Four- Wave Mixing Devices using Optical Fibers," IEEE Photonic. Tech. L. 6, 992-994 (1994).

O. Aso, A. Shin-Ichi, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband Four-Wave Mixing Generation in Short Optical Fibres," Electron. Lett. 36, 709-711 (2000).

G. D. Wilk, R. M. Wallace, and J. M. Anthony, "Hafnium and Zirconium Silicates for Advanced Gate Dielectrics," J. Appl. Phys. 87, 484-492 (2000).

G. Rayner, R. Therrien, and G. Lucovsky, "The structure of plasmadeposited and annealed pseudo-binary ZrO2-SiO2 alloys," Proc. Mater. Res. Soc. Symp. 611, C1.3.1-C1.3.9 (2000).

P. F. James, "Liquid-Phase Separation in Glass-Forming Systems," J. Mater. Sci. 10, 1802-1825 (1975).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 1995).

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, "CW Three-Wave Mixing in Single-Mode Fibers," J. Appl. Phys. 49, 50980-51006 (1978).

N. Shibata, R. P. Braun, and R. G. Warrts, "Phase-Mismatch Dependence of Efficiency of Wave Generation through Four-Wave Mixing in a Singlemode Fiber," Quantum Electron. 23, 1205-1211 (1987).