Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

Thermal diffusivity measurement of copper nanofluid using pulsed laser thermal lens technique

R. Zamiri, B. Z. Azmi, M. Shahril Husin, G. Zamiri, H. A. Ahangar, Z. Rizwan

Abstract


The pulsed laser thermal lens technique was used to study the thermal diffusivity of fluids containing copper nanoparticles (Cu-NPs) prepared by γ-irradiation method. The samples were prepared for the different concentrations of Cu precursor at 20 KGy dose. A Q-switched Nd-YAG pulsed laser of wavelength 532 nm was used as an excitation source and He-Ne laser was used as a probe beam in the present thermal lens experiment. It was found that the thermal diffusivity of the solution depends on the density of Cu-NPs.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12022]

Full Text: PDF

Citation Details


Cite this article

References


D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols, "A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups," Nature 408, 67-69 (2000).

S. W. Koch, and A. Knorr, "Optics in the nano-world," Science 293, 2217-2218 (2001).

D. S. Wen, and W. Ding, "Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (Nanofluids)," IEEE T. Nanotechnol. 5, 220-227 (2006).

S. P. Jang, and S. U. Choi, "Cooling performance of a microchannel heat sink with nanofluids," Applied Therm. Eng. 26, 2457-2463 (2006).

K. Hamad-Schifferli, J. J. Schwartz, A. T. Santos, S. G. Zhang, and J. M. Jacobson, "Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna," Nature 415, 152-155 (2002).

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-Enabled Photonics-Based Cancer Imaging and Therapy," Technol. Cancer Res. T. 3, 33-40 (2004).

D. P. O. Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near infrared absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).

G. Huttmann, and R. Birngruber, "On the possibility of highprecision photo thermal micro effects and the measurement of fast thermal denaturation of proteins," IEEE J. Sel. Top. Quant. 5, 954- 962 (1999).

G. Larsen, and S. Noriega, "Dendrimer-mediated formation of Cu- CuOx nanoparticles on silica and their physical and catalytic characterization," Appl. Catal. A-Gen. 278, 73-81 (2004).

S. Tarasov, A. Kolubaev, S. Belyaev, M. Lerner, and F. Tepper, "Study of friction reduction by nanocopper additive to motor oil," Wear 252, 63-69 (2002).

H. Wang, Y. Huang, Z. Tan, and X. Hu, "Transient mixing characteristic of reactor pressure vessel under pressurized thermal shock," Anal. Chim. Acta 526, 13-17 (2004).

S. Kapoor, and T. Mukherjee, "Photochemical formation of copper nanoparticles in poly n-vinyl pyrrolidone," Chem. Phys. Lett. 370, 83-87 (2003).

P. V. Kazakevich, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, "Laser induced synthesis of nanoparticles in liquids," Appl. Surf. Sci. 252, 4373-4380 (2006).

R. M. Tilaki, A. Irajizad, and S. M. Mahdavi, "Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids," Appl. Phys. A 88, 415-419 (2007).

I. Capek, "Preparation of metal nanoparticles in water-in-oil (W/O) microemulsions Advances in Colloid and Interface," Science 110, 49-74 (2004).

M. Saito, K. Yasukawa, T. Umeda, and Y. Aoi, "Copper nanoparticles fabricated by laser ablation in polysiloxane," Opt. Mat. 30, 1201-1204 (2008).

J. Shen, R. D. Lowe, and R. D. Snook, "A model for CW laser induced mode-mismatched dual-beam thermal lens spectrometry," Chem. Phys. 165, 385-396 (1992).

R. Zamiri, B. Z. Azmi, E. Shahriari, M. S. Husin, and M. Mahdi, "Thermal diffusivity measurement of silver nanofluid by using thermal lens technique," J. Laser Appl. 23, 042002-042006 (2011).

Q. Xue, and W. M. Xu, "A model of thermal conductivity of nanofluids with interfacial shells," Mater. Chem. Phys. 90, 298-301 (2005).

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, "Solvent effect on absolute fluorescence quantum yield of rhodamine 6G determined using transient thermal lens technique," Mod. Phys. Lett. B 13, 563-576 (1999).

J. L. J. Perez, J. F. S. Ramirez, R. G. Fuentes, A. Cruz-Orea, and J. L. H. Perez, "Enhanced of the R6G Thermal Diffusivity on Aggregated Small Gold Particles," Braz. J. Phys. 36, 1025-1028 (2006).

A. J. Twarowski, and D. S. Kliger, "Multiphoton absorption spectra using thermal blooming theory," Chem. Phys. 20, 253-258 (1977).

A. J. Twarowski, and D. S. Kliger, "Multiphoton absorption spectra using thermal blooming: II. Two-photon spectrum of benzene," Chem. Phys. 20, 259-264 (1977).

L. P. Ding, Y. Fang, "The study of resonance Raman scattering spectrum on the surface of Cu nanoparticles with ultraviolet excitation and density functional theory," Spectrochim. Acta A 67, 767-771 (2007).

R. C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1987).