Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

Microsized subsurface modification of mono-crystalline silicon via non-linear absorption

V. V. Parsi Sreenivas, M. Bülters, R. B. Bergmann

Abstract


We introduce a novel method of optically inducing microsized subsurface structures using non-linear absorption of near infrared light in mono-crystalline silicon. We discuss the physical processes such as multi-photon absorption and self focussing in the material. The results presented in this paper demonstrate a new method of subsurface modifications in silicon and may open up novel avenues for optical devices embedded in silicon and optical process for the separation of wafers from their ingots.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12035]

Full Text: PDF

Citation Details


Cite this article

References


W. C. O'Mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology (first edition, Noyes Publications, New Jersey, 1990).

R. B. Bergmann, Growth, Characterization and Electronic Applications of Si-based Thin Films (Research Signpost, Trivandrum, 2002).

R. Bergmann, and J. Werner, "The future of crystalline silicon films on foreign substrates," Thin Solid Films 403, 162-169 (2002).

A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, "Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses," Opt. Lett. 30, 964-966 (2005).

R. Bergmann, M. Bülters, and V. V. Parsi Sreenivas, "Verfahren und Vorrichtung zum Herstellen von mindestens einem photonischen Bauelement," German Patent 10 2011 113 824.6 (2011).

A. Hildebrand, and R. Bergmann, "Verfahren zum Separieren eines Halbleiter-Wafers von einem Halbleiterkristall," German Patent 10 2009 005 303.4 (2009).

A. Hildebrand, and R. Bergmann, "Verfahren zum Separieren eines Halbleiter-Wafers von einem Halbleiterkristall," European Patent 10 150 890.1-2302 (2010).

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther- Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, "Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation," Phys. Rev. B 73, 214101 (2006).

J. Leuthold, C. Koos, and W. Freude, "Nonlinear silicon photonics," Nat. Photonics 4, 535-544 (2010).

W. Spitzer, and H. Y. Fan, "Infrared Absorption in n-Type Silicon," Phys. Rev. 108, 268-271 (1957).

J. B. Ashcom, R. R. Gattass, C. B. Schaffer, and E. Mazur, "Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica," J. Opt. Soc. Am. B 23, 2317-2322 (2006).

M. C. Fischer, T. Ye, G. Yurtsever, A. Miller, M. Ciocca, W. Wagner, and W. S. Warren, "Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses," Opt. Lett. 30, 1551-1553 (2005).

Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15, 16604-16644 (2007).

M. G. Kuzyk and C. W. Dirk, "Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility," Phys. Rev. A 41, 5098-5109 (1990).

A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 m wavelength," Appl. Phys. Lett. 80, 416-418 (2002).

E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications (Pan Stanford Publishing, Singapore, 2011).

S. Bhagavat, and I. Kao, "Theoretical analysis on the effects of crystal anisotropy on wiresawing process and application to wafer slicing," Int. J. Mach. Tool. Manu. 46, 531-541 (2006).

R. R. Gattass, and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nat. Photonics 2, 219-225 (2008).