Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Effective and flexible modeling approach to investigate various 3D Talbot carpets from a spatial finite mask

J. Maaß, O. Sandfuchs, D. Thomae, A. Gatto, R. Brunner

Abstract


We present an effective modeling approach for a fast calculation of the Talbot carpet from an initially 2-dimensional mask pattern. The introduced numerical algorithm is based on a modified angular-spectrum method, in which it is possible to consider the border effects of the Talbot region from a mask with a finite aperture. The Bluestein’s fast Fourier transform (FFT) algorithm is applied to speed up the calculation. This approach allows as well to decouple the sampling points in the real space and the spatial frequency domain so that both parameters can be chosen independently. As a result an extended three-dimensional Talbot-carpet can be calculated with a minimized number of numerical steps and computation time, but still with high accuracy. The algorithm was applied to various 2-dimensional mask patterns and illumination setups. The influence of specific mask patterns to the resulting field intensity distribution is discussed.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13004]

Full Text: PDF

Citation Details


Cite this article

References


H. F. Talbot, ”Facts relating to Optical Science,” Philos. Mag. 9, 401–407 (1836).

L. Rayleigh, ”On Copying Diffraction Gratings and some Phenomena Connected Therewith,” Philos. Mag. 11, 196 (1881).

M. Thakur, C. J. Tay, and C. Quan, ”Surface profiling of a transparent object by use of phase-shifting Talbot interferometry,” Appl. Optics 44 (14), 2541–2545 (2005).

S. P. Trivedi, S. Prakash, S. Rana, and O. Sasaki, ”Real-time slope mapping and defect detection in bent plates using Talbot interferometry,” Appl. Optics 49 (4), 897–903 (2010).

J. Dhanotia, and S. Prakash, ”Automated collimation testing by incorporating the Fourier transform method in Talbot interferometry,” Appl. Optics 50 (10), 1446–1452 (2011).

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. Zheludev, ”Focusing of light by a nano-hole array,” Frontier in Optics Conference, Rochester, New York, USA (2006).

H. L. Kung, A. Bhatnagar, and D. A. B. Miller, ”Transform spectrometer based on measuring the periodicity of Talbot self-images,” Opt. Lett. 26 (21), 1645–1647 (2001).

S. De Nicola, P. Ferraro, G. Coppola, A. Finizio, G. Pierattini, and S. Grilli, ”Talbot self-image effect in digital holography and its application to spectrometry,” Opt. Lett. 29 (1), 104–106 (2004).

T. J. Suleski, Y.-C. Chuang, P. C. Deguzman, and R. A. Barton, ”Fabrication of optical microstructures through fractional Talbot imaging,” Proc. SPIE 5720, 86–93 (2005).

S. Jeon, V. Malyarchuk, and J. A. Rogers, ”Fabricating threedimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14 (5), 2300–2308 (2006).

T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, ”Half-tone proximity lithography,” Proc. SPIE 7716, 77160Y (2010).

L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, ”Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express 18 (19), 19485 (2010).

H. H. Solak, Ch. Dais, and F. Clube, ”Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19 (12), 10686 (2011).

W. Klaus, Y. Arimoto, K. Kodate, ”High-performance Talbot array illuminators,” Appl. Optics 37 (20), 4357–4365 (1998).

L.-W. Zhu, X. Yin, Z. Hong, C.-S. Guo, ”Reciprocal vector theory for diffractive self-imaging,” J. Opt. Soc. Am. A 25 (1), 203–210 (2008).

W. Qu, L. Liu, D. Liu, Y. Zhi, and W. Lu, ”Near-field hexagonal array illumination based on fractional Talbot effect,” Optik 118, 330–334 (2006).

L. I. Bluestein, ”A linear filtering approach to the computation of discrete Fourier Transform,” Transaction on Audio and Electroacoustic AU 18 (3), 451-455 (1968).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Book Co., Singapore, 1996).

L.-W. Zhu, X. Yin, Z. Hong, and C.-S. Guo, ”Reciprocal vector theory for diffractive self-imaging,” J. Opt. Soc. Am. A 25 (1), 203–210 (2007).

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, J. A Rogers, ”Fabrication complex three dimensional nanostructures with high-resolution conformable phase masks,” PNAS 101 (34), 12428–12433 (2004).

U. Jauerning, S. Schröter, S. Brückner, M. Vlcek, and H. Bartelt, ”Strukturierte Gitterkopplung auf den Endflächen von Lichtleitfasern für Anwendungen zur spektralen Filterung und Sensorik,” DGaO 2010, 1614–8436 (2010).