Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Multipole polarizability of a nanodimer in optical waves

P. Grahn, A. Shevchenko, M. Kaivola

Abstract


In this work we study the interaction of visible light with plasmonic nanodimers that, under particular illumination conditions, do not exhibit any electric dipole excitations. It has previously been found out that the dipole suppression phenomenon disappears when the illumination direction is reversed. As a consequence, a homogeneous nanomaterial consisting of such nanodimers can be expected to be spatially dispersive, such that the conventional electric polarization vanishes for certain directions of light propagation. In order to reveal the complete picture of the light-nanodimer interaction, we analyze the multipole excitations in a dimer at various illumination angles. In particular, we introduce an analytical model for the multipole polarizability tensors of the dimer that, in contrast to conventional polarizability tensors, depend on the light propagation direction. The model is verified by rigorous numerical calculations. It can be used to gain insight into the properties of optical nanomaterials, such as metamaterials, in which higher-order multipoles can be efficiently excited.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13009]

Full Text: PDF

Citation Details


Cite this article

References


C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, et al., ”Scattering properties of meta-atoms,” Phys. Rev. B 83, 245119 (2011).

R. E. Raab, and O. L. de Lange, Multipole Theory in Electromagnetism (Oxford, New York, 2005).

W. Cai, and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2009).

P. Grahn, A. Shevchenko, and M. Kaivola, ”Electric dipole-free interaction of visible light with pairs of subwavelength-size silver particles,” Phys. Rev. B 86, 035419 (2012).

C. R. Simovski, ”On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011).

N. A. Mortensen, M. Yan, O. Sigmund, O. Breinbjerg, ”On the unambiguous determination of effective optical properties of periodic metamaterials: a one-dimensional case study,” J. Europ. Opt. Soc. Rap. Public. 5, 10010 (2010).

D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, ”Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78, 121101 (2008).

R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, and F. Lederer, ”Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas,” Phys. Rev. B 86, 035404 (2012).

B. Gompf, B. Krausz, B. Frank, and M. Dressel, ”k-dependent optics of nanostructures: Spatial dispersion of metallic nanorings and split-ring resonators,” Phys. Rev. B 86, 075462 (2012).

P. B. Johnson and R. W. Christy, ”Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

P. Grahn, A. Shevchenko, and M. Kaivola, ”Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).