Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Reduction of the nonlinear phase shift induced by stimulated Brillouin scattering for bi-directional pumping configuration system using particle swarm optimization algorithm

H. A. Al-Asadi

Abstract


We present a theoretical analysis of an additional nonlinear phase shift of backward Stokes wave based on stimulated Brillouin scattering in the system with a bi-directional pumping scheme. We optimize three parameters of the system: the numerical aperture, the optical loss and the pumping wavelength to minimize an additional nonlinear phase shift of backward Stokes waves due to stimulated Brillouin scattering. The optimization is performed with various Brillouin pump powers and the optical reflectivity values are based on the modern, global evolutionary computation algorithm, particle swarm optimization. It is shown that the additional nonlinear phase shift of backward Stokes wave varies with different optical fiber lengths, and can be minimized to less than 0.07 rad according to the particle swarm optimization algorithm for 5 km. The bi-directional pumping configuration system is shown to be efficient when it is possible to transmit the power output to advanced when frequency detuning is negative and delayed when it is positive, with the optimum values of the three parameters to achieve the reduction of an additional nonlinear phase shift.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13012]

Full Text: PDF

Citation Details


Cite this article

References


G. P. Agrawal, Nonlinear Fibre Optics (fourth edition, Academic Press, New York, 2006).

R. W. Boyd, Nonlinear Optics (second edition, Academic Press, New York, 2002).

D. Cotter, ”Stimulated Brillouin scattering in optical fibers,” J. Opt. Commun. 4, 10–19 (1982).

A. Yeniay, J. M. Delavaux, and J. Toulouse, ”Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20, 1425–1432 (2002).

E. Elbeltagi, T. Hegazy, and D. Grierson, ”Comparison among five evolutionary-based optimization algorithms,” Adv. Eng. Inform. 19, 43–53 (2005).

C. Blum, and D. Merkle (Eds.), Swarm Intelligence: Introduction and Applications (Springer, Berlin / Heidelberg, 2008).

C. Susana, and A. Coello, Particle Swarm Optimization in Nonstationary Environments (Springer, Berlin / Heidelberg, 2009).

E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, Oxford, 1999).

R. W. Boyd, K. Rzazewski, and P. Narum, ”Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5520 (1990).

R. B. Jenkins, R. M. Sova, and R. I. Joseph, ”Steady-state noise analysis of spontaneous and stimulated Brillouin scattering in optical fibers,” J. Lightwave Technol. 25, 763–770 (2007).

M. Artiglia, ”Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7, 1139–1152 (1989).

M. Nikles, L. Thevenaz, and P. A. Robert, ”Brillouin Gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).

Y. Namihira, ”Relationship between nonlinear effective area and modefield diameter for dispersion shifted fibers,” Electron. Lett. 30, 262–263 (1994).

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, ”Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6, 535– 538 (2009).

H. A. Al-Asadi, A. A. Bakar, F. R. Adikan, and M. A. Mahdi, ”Analytical study of nonlinear phase shift through stimulated Brillouin scattering in single mode fiber with the pump power recycling technique,” J. Opt. 13, 105701 (2011).

J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence (Morgan Kaufmann Publishers, San Francisco, 2004).