Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Qualifying parabolic mirrors with deflectometry

J. Burke, W. Li, A. Heimsath, C. von Kopylow, R. B. Bergmann

Abstract


Phase-measuring deflectometry is a full-field gradient technique that lends itself very well to testing reflective optical surfaces. In the past, the industry’s interest has been focussed mainly on the detection of defects and ripples, since it is easy to achieve sensitivity in the nm range. On the other hand, attempts to reconstruct the absolute surface shape from the gradient map have been plagued by systematic errors that accumulate to unacceptable uncertainties during data integration. Recently, thanks to improved measurement and evaluation techniques, the state of the art in absolute surface measurement has reached a level of maturity that allows its practical usage in precision optical manufacturing and qualification systems. We demonstrate the techniques, and the progress, by way of results from mirrors for telescopes, solar concentrators, and precision laboratory assemblies.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13014]

Full Text: PDF

Citation Details


Cite this article

References


C. Faber, E. Olesch, R. Krobot, and G. Häusler, ”Deflectometry challenges interferometry: the competition gets tougher!,” Proc. SPIE 8493, 84930R (2012).

W. Li, M. Sandner, A. Gesierich, and J. Burke, ”Absolute optical surface measurement with deflectometry,” Proc. SPIE 8494, 84940G (2012).

J. Burke, ”Phase Decoding and Reconstruction,” in Optical Methods for Solid Mechanics E. Hack, P. Rastogi, eds., 83–139 (Wiley-VCH, Weinheim, 2012).

W. Nadeborn, W. Osten, and P. Andrä, ”A robust procedure for absolute phase measurement,” Opt. Lasers Eng. 24(2-3), 245–260 (1996).

W. Li, T. Bothe, C. von Kopylow, and W. Jütner, ”Evaluation methods for gradient measurement techniques,” Proc. SPIE 5457, 300–311 (2004).

S. Ettl, J. Kaminski, M. Knauer, and G. Häusler, ”Shape reconstruction from gradient data,” Appl. Opt. 47(12), 2091–2097 (2008).

H. Zhang, S. Han, S. Liu, S. Li, L. Ji, and X. Zhang, ”3D shape reconstruction of large specular surface,” Appl. Opt. 51(31), 7616–7625 (2012).

L. Huang, and A. Asundi, ”Improvement of least-squares integration method with iterative compensations in fringe reflectometry,” Appl. Opt. 51(31), 7459–7465 (2012).

Y. Tang, X. Su, and S. Hu, ”Measurement based on fringe reflection for testing aspheric optical axis precisely and flexibly”, Appl. Opt. 50(31), 5944–5948 (2011).

W. Li, and J. Burke, ”Highly accurate surface reconstruction for deflectometry,” in Proceedings of the 113th Annual Meeting of the DGaO, A23 (DGaO, Eindhoven, 2012).

H. Helmers, A. Boos, F. Jetter, A. Heimsath, M. Wiesenfarth, and A. Bett, ”Outdoor Test Setup for Concentrating Photovoltaic and Thermal (CPVT) Systems,” Proc. AIP 1407, 175–179 (2011).

P. Su, R. Parks, L. Wang, R. Angel, and J. Burge, ”Software configurable optical test system: a computerized reverse Hartmann test,” Appl. Opt. 49(23), 4404–4412 (2010).

A. Heimsath, W. Platzer, T. Bothe, and W. Li, ”Characterization of Optical Components for Linear Fresnel Collectors by Fringe Reflection Method,” in Proceedings of the 14th Solar Paces conference, 1–8 (IEA, Las Vegas, 2008).

www.fringeprocessor.de

A. Heimsath, G. Bern, P. Nitz, ”Shape accuracy of solar mirrors - comparison of two methods using fringe reflection technique,” in Proceedings of the 17th Solar Paces conference, 76 (IEA, Granada, 2011).

M. Sandner, W. Li, T. Bothe, J. Burke, C. von Kopylow, and R. Bergmann, ”Absolut-Abstandsreferenz für die Streifenreflexionstechnik zur Verringerung systematischer Messfehler,” in Proceedings of the 112th Annual Meeting of the DGaO, A2 (DGaO, Ilmenau, 2011).

J. Burke, K. Wang, and A. Bramble, ”Null test of an off-axis parabolic mirror. I. Configuration with spherical reference wave and flat return surface,” Opt. Express 17(5), 3196–3210 (2009).

J. Burke, ”Null test of an off-axis parabolic mirror. II. Configuration with planar reference wave and spherical return surface,” Opt. Express 17(5), 3242–3254 (2009).