Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Theoretical demonstration of highly efficient cw THz generation by using composite photonic-structure elements

A. Oyamada, H. Kitaguchi, K. Ebata, H. Ishihara

Abstract


We theoretically propose one-dimensional composite photonic structures for high-resolution THz spectroanalysis. We compare the performance of two GaAs/AlAs composite photonic-structure devices, one with usual 1/4-wavelength layers of distributed Bragg reflectors (DBRs), and the other with the designed DBRs. The device with designed DBRs shows the optical-to-terahertz conversion efficiency up to 10^-5 and wide frequency tunability ranging from sub-THz to 3 THz. We found that the composite photonic structure allows us to control photonic modes with a high degree of freedom by flexible structure designs. This device achieve a cw THz source with a highly narrow bandwidth operating at room temperature.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13023]

Full Text: PDF

Citation Details


Cite this article

References


T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, ”Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104 (2006).

C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, ”Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91, 131122 (2007).

F. Hindle , A. Cuisset, R. Bocquet, and G. Mouret, ”Continuouswave terahertz by photomixing: applications to gas phase pollutant detection and quantification,” C. R. Physique 9, 262–275 (2008).

G .P. Gallerano, and S. Biedron, ”Overview of terahertz radiation sources,” in Proceedings of the 2004 FEL Conference, 216–221 (Sincrotrone Trieste S.C.p.A, Trieste, 2004).

G. D. Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, ”Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E 63, 036610 (2001).

H. Yang, P. Xie, S. K. Chan, Z. Q. Zhang, I. K. Sou, G. K. L. Wong, and K. S. Wong, ”Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal,” Appl. Phys. Lett. 87, 131106 (2005).

T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, ”GaAs/AlAs coupled multilayer cavity structures for terahertz emission devices,” Appl. Phys. Lett. 95, 111106 (2009).

K. Saito, T. Tanabe, and Y. Oyama, ”THz-Wave Generation from GaP THz Photonic Crystal Waveguides under Difference-Frequency Mixing,” OPJ 2, 201–205 (2012).

T. Chen, J. Sun, L. Li, J. Tang, and Y. Zhou, ”Design of a Photonic Crystal Waveguide forTerahertz-Wave Difference-Frequency Generation,” IEEE Photonic. Tech. L. 24, 921–923 (2012).

E. Yablonovitch, ”Photonic band-gap structures,” JOSA B 10, 283–295 (1993).

R. W. Boyd, Nonlinear Optics (Third Edition, Academic Press, San Diego, 2008).

W. C. Chew, Waves and Field in Inhomogeneous Media (IEEE Press, New York, 1995).

B. F. Levine, and C. G. Bethea, ”Nonlinear Susceptibility of GaP; Relative Measurement and Use of Measured Values to Determine a Better Absolute Value,” Appl. Phys. Lett. 20, 272 (1972).

J. Talghader, and J. S. Smith, ”Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335 (1995).