Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Measurement of the optical transfer function using a white-dot pattern presented on a liquid-crystal display

F. A. Navas-Moya, J. L. Nieves, E. M. Valero, E. Garrote

Abstract


The optical transfer function (OTF) and its modulus, the modulation transfer function (MTF), are widely accepted measurements of the quality of optical systems. There are different ways of estimating both OTF and MTF. Random-dot-pattern methods have some advantages when computing MTFs, especially those which present the pattern on a liquid crystal-display (LCD) screen because no additional light source is needed. Nevertheless spatial information is not usually available in the image plane because MTFs are computed for the whole image in a finite number of directions only. We propose a way of providing spatial information by measuring a number of point-spread functions (PSFs). Created by a white-dot pattern on a LCD screen, white pixels operate as point sources and PSFs are calculated to eventually result in the OTF of the system. MTFs in the main directions are computed to compare with reference values obtained by the random-dot method. Sensor and LCD resolutions define the achievable MTF range. Our proposed method is used to characterize a liquid-crystal tunable filter (LCTF) attached to a monochrome camera at different wavelengths. This method, which is both easy to install and to use, achieves results with errors of less than 3%, and has advantages over classical OTF estimation methods: spatial information provided in the image plane, all frequencies and directions covered in a single capture, no additional light source needed and derivative-dependent noise avoided.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13029]

Full Text: PDF

Citation Details


Cite this article

References


M. R. Arnison, D. P. Morgan-Mar, C. A. Deller, P. A. Fletcher, and K. G. Larkin, ”Measurement of the lens optical transfer function using a tartan pattern,” Appl. Opt. 50(15), 2158–2169 (2011).

C. D. Claxton, and R. C. Staunton, ”Measurement of the pointspread function of a noisy imaging system,” J. Opt. Soc. Am. 25(1) 159–170 (2008).

E. Levy, D. Peles, M. Opher-Lipson, and S. G. Lipson, ”Modulation transfer function of a lens measured with a random target method,” Appl. Opt. 38(4), 679–683 (2004).

P. D. Lin, and W. Wu, ”Calculation of the modulation transfer function for object brightness distribution function oriented along any direction in axis-symmetrical optical systems,” Appl. Opt. 50(17), 2759–2772 (2011).

A. M. Pozo, A. Ferrero, M. Rubiño, J. Campos, and A. Pons, ”Improvements for determining the modulation transfer function of charge-coupled devices by the speckle method,” Opt. Soc. Am. Optics Express 14(13), 5928–5936 (2006).

H. Haim, N. Konforti, and E. Marom, ”Performance of imaging systems analyzed with two-dimensional target,” Appl. Opt. 51(25), 5966–5972 (2012).

P. W. Nugent, J. A. Shaw, M. R. Kehoe, C. W. Smith, T. S. Moon, and R. C. Swanson, ”Measuring the modulation transfer function of an imaging spectrometer with rooflines of opportunity,” Optical Engineering 49(10) 103201 (2010).

J. C. Feltz, and M. A. Karim, ”Modulation transfer function of charge-coupled devices,” Appl. Opt. 29(5), 717–722 (1990).

V. Havránek, ”Overview of OTF measurement,” Physica 40-41, 63–86 (2001).

S. M. Backman, A. J. Makynen, T. T. Kolehmainen, and K. M. Ojala, ”Random target method for fast MTF inspection,” Opt. Soc. Am. 12(12) (2004).

P. D. Woolliams, and P. H. Tomlins, ”The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol. 56, 2855 (2011).

G. L. Rogers, ”Measurement of the modulation transfer function of paper,” Appl. Opt. 37, 7235–7240 (1998).

A. Fernández-Oliveras, A. M. Pozo, and M. Rubiño, ”Comparison of spectacle-lens optical quality by modulation transfer function measurements based on random-dot patterns,” Opt. Eng. 49(8), 083603 (2010).

M. Marchywka, and D. G. Socker, ”Modulation transfer function measurement technique for small-pixel detectors,” Appl. Opt. 31(34), 7198–7213 (1992).

A. M. Pozo-Molina, J. J. Castro-Torres, and A. M. Rubiño-López, ”Optical-quality evaluation of liquid crystal displays through the modulation transfer function using random-dot patterns,” Opt. Pura Apl. 43(1), 27–30 (2010).

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, Greenwood Village, 2005).

J. D. Eskin, and M. M. Blouke, ”Improvements in Modeling of Diffusion-Limited Point Spread Function in Solid-State Detectors,” IEEE T. Electron Dev. 56(11), 2468–2472 (2009).

N. N. Evtikhiev, S. N. Starikov, P. A. Cheryomkhin, and V. V. Krasnov, ”Measurement of noises and modulation transfer function of cameras used in optical-digital correlators,” Proc. SPIE 8301, 830113 (2012).

A. Mansouri, F. S. Marzani, and P. Gouton, ”Development of a protocol for CCD calibration: Application to a multispectral imaging system,” Int. J. Robot. Autom. 20(2), 94–100 (2005).

J. C. Mullikin, L. J. van Vliet, H. Netten, F. R. Boddeke, G. van der Feltz, and I. T. Young, ”Methods for CCD camera characterization,” Proc. SPIE. 2173 73–84 (1994).

I. MathWorks, ”Matlab, release R2010b, version 7.11.,” Registered trademark of The MathWorks, Inc. (2010).