Journal of the European Optical Society - Rapid publications, Vol 8 (2013)
Design of nanofibres for efficient stimulated Raman scattering in the evanescent field
Abstract
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13030]
Citation Details
Cite this article
References
L. M. Tong, J. Y. Lou, and E. Mazur, â€Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,†Opt. Express 12, 1025–1035 (2004).
L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, â€Optical microfibers and nanofibers: A tutorial,†Opt. Commun. 285, 464–4647 (2012).
M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, â€Nonlinear optics in photonic nanowires,†Opt. Express 16, 1300–1320 (2008).
T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, â€Supercontinuum generation in tapered fibers,†Opt. Lett. 25, 1415–1417 (2000).
J. M. Harbold, F. Ö. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, â€Long-wavelength continuum generation about the second dispersion zero of a tapered fiber,†Opt. Lett. 27, 1558–1560 (2002).
R. Zhang, J. Teipel, X. Zhang, D. Nau, and H. Giessen, â€Group velocity dispersion of tapered fibers immersed in different liquids,†Opt. Express 12, 1700–1707 (2004).
S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, "Supercontinuum generation in submicron fiber waveguides,†Opt. Express 12, 2864–2869 (2004).
C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, â€Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,†Opt. Lett. 30, 1980–1982 (2005).
R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, â€Supercontinuum generation in submicrometer diameter silica fibers,†Opt. Express 14, 9408–9414 (2006).
D. D. Hudson, E. C. Mägli, A. C. Judge, S. A. Dekker, and B. J. Eggleton, â€Highly nonlinear chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,†Opt. Commun. 285, 4660–4669 (2012).
S. Richard, â€Second-harmonic generation in tapered optical fibers,†J. Opt. Soc. Am. B 27, 1504–1512 (2010).
A. Couillet, and Ph. Grelu, â€Third-harmonic generation in optical microfibers: From silica experiments to highly nonlinear glass prospects,†Opt. Commun. 285, 3493–3497 (2012).
R. Ismaeel, T. Lee, M. Ding, N. G. R. Broderick, and G. Brambilla, â€Nonlinear microfiber loop resonators for resonantly enhanced third harmonic generation,†Opt. Lett. 37, 5121–5123 (2012).
J. Y. Lou, L. M. Tong, and Z. Z. Ye, â€Modeling of silica nanowires for optical sensing,†Opt. Express 13, 2135–2140 (2005).
K. P. Nayak, P. N. Melentiev, M. Morinaga, Fam Le Kien, V. I. Balykin, and K. Hakuta, â€Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,†Opt. Express 15, 5431–5438 (2007).
X. Guo, and L. M. Tong, â€Supported microfiber loops for optical sensing,†Opt. Express 16, 14429–14434 (2008).
S. W. Harun, K. S. Lim, S. S. A. Damanhuri, and H. Ahmad, â€Microfiber loop resonator based temperature sensor,†J. Europ. Opt. Soc. Rap. Public. 6, 11026 (2011).
L. Shan, G. Pauliat, L. M. Tong, and S. Lebrun â€Optimal nanofiber dimensions for stimulated Raman scattering in the evanescent field,†in Proceedings to the European Optical Society Annual Meeting (EOS, Aberdeen, 2012).
L. Shan, G. Pauliat, L. M. Tong, and S. Lebrun â€Demonstration of stimulated Raman scattering in the evanescent field of a tapered nanofiber,†in Proceedings to the European Optical Society Annual Meeting (EOS, Aberdeen, 2012).
R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, â€Optical microfiber passive components,†Laser Photonics Rev., 1–35 (2012).
G. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 2007).
A. W. Snyder, and J. Love, Optical Waveguide Theory (Kluwer Academic Publishers, London, 1983).
J. Bures, Optique Guidée : fibres optiques et composants passifs tout-fibre (Presses internationales Polytechnique, Montreal, 2009).
M. D. Turner, T. M. Monro, and S. Afshar, â€A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated Raman Scattering,†Opt. Express 17, 11565–11581 (2009).
R. H. Stolen, Clinton Lee, and R. K. Jain, â€Development of the stimulated Raman spectrum in single-mode silica fibers,†J. Opt. Soc. Am. B 1, 652–657 (1984).
R. G. Smith, â€Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,†Appl. Opt 11, 2489–2494 (1972).
E. Landahl, D. Baiocchi, and J. R. Thomson, â€A simple analytic model for noise shaping by an optical fiber Raman generator,†Opt. Commun. 150, 339–347 (1998).
S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, et al., â€Stimulated Raman scattering in an ethanol core microstructured optical fiber,†Opt. Express 13, 4786–4791 (2005).
S. Lebrun, P. Delaye, R. Frey, and G. Roosen, â€High-efficiency single-mode Raman generation in a liquid-filled photonic bandgap fiber,†Opt. Lett. 32, 337–339 (2007).
S. Lebrun, C. Buy, P. Delaye, R. Frey, G. Pauliat, and G. Roosen, â€Optical characterizations of a Raman generator based on a hollow core photonic crystal fiber filled with a liquid,†J. Nonlinear Opt. Phys. & Mat. 19, 101–109 (2009).
M. Maier, W. Kaiser, and J. A. Giordmaine, â€Backward Stimulated Raman Scattering,†Phys. Rev. 177, 580–599 (1969).
S. P. S. Porto, â€Angular Dependence and Depolarization Ratio of the Raman Effect,†J. Opt. Soc. Am. 56, 1585–1589 (1966).
H. El-Kashef, â€The necessary requirements imposed on polar dielectric laser dye solvents,†Physica B: Condensed Matter 279, 295–301 (2000).
M. J. Colles, and J. E. Griffiths, â€Relative and absolute Raman scattering cross section in liquids,†J. Chem. Phys. 56, 3384–3391 (1971).
J. E. Griffiths, â€Raman-scattering cross-sections in strongly interacting liquid-systems - CH3OH, C2H5OH, I-C3H7OH, (CH3)2CO, H2O, and D2O,†J. Chem Phys. 60, 2556 (1974).
J. Rheims, J. Köser, and T. Wriedt, â€Refractive-index measurements in the near-IR using an Abbe refractometer,†Meas. Sci. Technol. 8, 601–605 (1997).
J. E. F. Rubio, J. M. Arsuaga, M. Taravillo, V. G. Baonza, and M. Caceres, â€Refractive index of benzene and methyl derivatives: temperature and wavelength dependencies,†Exp. Therm. Fluid. Sci. 28, 887–891 (2004).
W. Proffitt, and S. P. S. Porto, â€Depolarization ratio in Raman spectroscopy as a function of frequency,†J. Opt. Soc. Am. 63, 77–80 (1973).
Y. Kato, and H. Takuma, â€Absolute Measurement of Raman- Scattering Cross Sections of Liquids,†J. Opt. Soc. Am. 61, 347–350 (1971).
F. J. McClung, and D. Weiner, â€Measurement of Raman Scattering Cross Sections for Use in Calculating Stimulated Raman Scattering Effects,†J. Opt. Soc. Am. 54, 641–641 (1964).
W. R. L. Clements, and B. P. Stoicheff, â€Raman linewidths for stimulated threshold and gain calculations,†Appl. Phys. Lett. 12, 246–248 (1968).
V. G. Foster, â€Determination of the refractive index dispersion of liquid nitrobenzene in the visible and ultraviolet,†J. Phys. D: Appl. Phys. 25, 525–529 (1992).
K. Sakamoto, G. Mizutani, and S. Ushioda, â€Absolute Ramanscattering cross section of a surface-adsorbed layer: Amorphous nitrobenzene on Ni(111),†Phys. Rev. B 48, 8993–9005 (1993).
J.G. Skinner, and W. G. Nilsen, â€Absolute Raman Scattering Cross- Section Measurement of the 992 cm??1 Line of Benzene,†J. Opt. Soc. Am. 58, 113–118 (1968).
K. Narendra, P. Narayanamurthy, and Ch. Srinivasu, â€Refractive Indices of Binary Liquid Mixture at Different Temperatures,†Asian Journal of Applied Sciences 4, 535–541 (2011).
R. Mehra, â€Application of refractive index mixing rules in binary systems of hexadecane and heptadecane with n-alkanols at different temperatures,†Proceedings of the Indian Academy of Sciences-Chemical Sciences 115, 147–154 (2003).
J. R. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, â€Interaction between light waves in a nonlinear dielectric,†Phys. Rev. 127, 1918–1939 (1962).
P. D. Maker, and R. W. Terhune, â€Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength,†Phys. Rev. 137, A801 (1965).
and errata, P. D. Maker, and R. W. Terhune, â€Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength,†Phys. Rev. A 148, 990–990 (1966).