Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Mid-Spatial Frequency Error (PSD-2) of optics induced during CCOS and full-aperture polishing

D. Liao, Z. Yuan, C. Tang, R. Xie, X. Chen

Abstract


Mid-Spatial Frequency (MSF) Wavefront Error of optics divided into the PSD-1 and PSD-2 ranges plays an important role in the performance of high power laser systems. The present work focuses on the PSD-2 range in terms of short ripples which haven’t been well studied in the literature. Characteristics and origins of these short ripples were detailed, whereafter small tool computer controlled polishing (CCP) and conventional full aperture polishing experiments were conducted on fused silica. It is revealed that PSD2 error is independent of the main process parameters including lap rotating rate and polishing pressure in continuous polishing and tool path pitch and crossfeed velocity in small tool CCP processes. Whereas the type of polishing lap has a decisive effect on PSD2 error of the optics. The pitch lap shows superiority in restraint of short ripples over polyurethane pad. By introducing diamond conditioner for dressing polyurethane pad, the PSD2 error has been greatly decreased.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13031]

Full Text: PDF

Citation Details


Cite this article

References


J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, et al., ”NIF Optical Materials and Fabrication Technologies: An Overview,” Proc. SPIE 5341, 85 (2004).

J. K. Lawson, J. M. Auerbach, R. E. English, M. A. Henesian, J. T. Hunt, R. A. Sacks, J. B. Trenholme, et al., ”NIF Optical Specifications - The Importance of the RMS Gradient,” Proc. SPIE 3492, 336 (1998).

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, ”The National Ignition Facility Wavefront Requirements and Optical Architecture,” Proc. SPIE 5341, 25 (2004).

D. M. Aikens, C. R. Wolfe, and J. K. Lawson, ”The use of Power Spectral Density (PSD) functions in specifying optics for the National Ignition Facility,” Proc. SPIE 2576, 281–292 (1995).

X. J. Zhang, J. C. Yu, Z. Y. Zhang, Q. D. Wang, and W. P. Zheng, ”Analysis of residual fabrication errors for computer controlled polishing aspherical mirrors,” Opt. Eng. 36(12), 3386–3391 (1997).

H. Hu, Y. F. Dai, and X. Q. Peng, ”Restraint of tool path ripple based on surface error distribution and process parameters in deterministic finishing,” Opt. Express 18(22), 22973–22981 (2010).

Y. F. Dai, F. Shi, X. Q. Peng, and S. Y. Li, ”Restraint of mid-spatial frequency error in magnetorheological finishing (MRF) process by maxium entrophy method,” Sci. China Ser. E: Technol. Sci. 52(10), 3902–3097 (2009).

G. Yu, H. Li, and D. Walker, ”Removal of Mid Spatial-Frequency Features in Mirror Segments,” J. Europ. Opt. Soc. Rap. Public. 6, 11044 (2011).

T. T. Michael, H. B. James, and A. Bill, ”Aspheric optics: smoothing the ripples with semiflexible tools,” Opt. Eng. 41(7), 1473–1474 (2002).

C. R. Dunn, D. D. Walker, A. Beaucamp, J. Kelchner, and R. Freeman, ”Improving Surface PSD Using a Random Tool Path,” in Optical Fabrication and Testing, OSA Technical Digest (CD), OThB5 (Optical Society of America, 2008).

C. R. Dunn, and D. D. Walker, ”Pseudo-random tool paths for CNC sub-aperture polishing and other applications,” Opt. Express 16(23), 18942–18949 (2008).

J. D. Nelson, B. Light, D. Savage, R. Wiederhold, and M. Mandina, ”VIBE™Finishing to Remove Mid-Spatial Frequency Ripple,” in Optical Fabrication and Testing, OSA Technical Digest (CD), OWE2 (Optical Society of America, 2010).

F. W. Preston, ”The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214–256 (1927).

D. W. Kim, and J. H. Burge, ”Rigid conformal polishing tool usingnon-linear visco-elastic effect,” Opt. Express 18, 2242–2257 (2010).

B. C. Don Loomis, Crawford, Norm Schenck, and Bill Anderson, personal communication (Tucson, Arizona, 2009).

A. Bastawros, A. Chandra, Y. Guo, and B. Yan, ”Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31(10), 1022–1031 (2002).

M. R. Oliver, R.E. Schmidt, and M. Robinson, ”CMP pad surface roughness and CMP removal rate,” Elec. Soc. S. 26, 77–83 (2001).

D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, ”Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts,” IEEE T. Semiconduct. M. 15(2), 232–244 (2002).

K. Park, J. Park, B. Park, and H. Jeong, ”Correlation between breakin characteristics and pad surface conditions in silicon wafer polishing,” J. Mater. Process. Tech. 205(1), 360–365 (2008).

J. McGrath, and C. Davis, ”Polishing pad surface characterisation in chemical mechanical planarisation,” J. Mater. Process. Tech. 153, 666–673 (2004).

B. Park, H. Lee, K. Park, H. Kim, and H. Jeong, ”Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry,” J. Mater. Process. Tech. 203(1), 287–292 (2008).