Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Method for distortion correction of multi-layered surface reconstruction using time-gated wavefront sensing approach

C. S. Tan, X. Wang, Y. H. Ng, W. K. Lim, T. Y. Chai

Abstract


In order to estimate the multi-layer surface profile and to detect the inter-layer surfaces defects, gated wavefront sensing approach has been proposed in the previous works [1, 2]. However, the proposed methodology measures the wavefront that has been distorted by its prior surfaces (reflected wavefront) or post surfaces (transmitted wavefront). Analysis has to be performed to estimate the multi-layer wavefront sensing by taking into consideration the multi-layer surfaces condition. For reflected wavefront, the bottom layer(s) wavefront is (are) being distorted twice via separate interface points while traveling back to the lenslet arrays through our observation for the slope and phase measurement. The subsequent reconstructed surfaces are not accurate and corrected. Thus, a discrete layer correction technique for the surface reconstruction has been proposed to enhance the reconstruction accuracy by using the upper/top layer’s wavefront information. This paper discusses on the case of 2-layer system, where the reflected wavefront from the bottom layer has been distorted and its surface reconstruction has been corrected. The results show that the distortion is significant and the correction is deemed necessary for industrial application such as in wafer warpage inter-layer profile estimation.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13034]

Full Text: PDF

Citation Details


Cite this article

References


S. Tuohy, and A. Podoleanu, ”Depth-resolved wavefront aberrations using a coherence-gated shack-hartmann wavefront sensor,” Opt. Express 18, 3458–3476 (2010).

J. Wang, and A. Podoleanu, ”Time-domain coherence-gated Shack- Hartmann wave-front sensor,” Proc. SPIE 8091, 80911L (2011).

N. Goloborodko, V. Grygoruk, V. Kurashov, D. Podanchuk, A. Goloborodko, and M. Kotov, ”Determination of surface defects by using the wavefront scanner,” Quantum Electronics and Optoelectronics 13, 65–69 (2010).

N. Bai, L. Zhao, and P. Fang, ”Digital shack-hartmann wavefront sensor for toroidalsurface measurement,” Proc. SPIE. 6616, 661644 (2007).

T. Raymond, D. Neal, D. Topa, and T. Schmitz, ”High-speed noninterferometric nanotopographic characterization of Si wafer surfaces,” Proc. SPIE 4809, 208–216 (2002).

A. Nutsch, L. Pfitzner, T. Grandin, X. Levecq, and S. Bucourt, ”Determination of atness on patterned wafer surfaces using wavefront sensing methods,” Proc. SPIE. 7155, 71550Z (2008).

A. Nutsch, S. Bucourt, T. Grandin, I. Lazareva, and L. Pfitznera, ”Wavefront sensor for highly accurate characterization of atness on wafer surfaces,” in Proceedings of the International Conference on Frontiers of Characterization and Metrology for Nanoelectronics, 188–192 (NIST, New York, 2009).

K. Nemoto, K. Watanabe, T. Hayashi, K. Tsugane, and Y. Tamaki, ”Impact of silicon surface roughness on device performance and novel roughness measurement method,” in Proceedings of the Advanced Semiconductor Manufacturing Conference, 157–160 (IEEE/SEMI, Stresa, 2007).

M. Nagel, A. Michalski, and H. Kurz, ”Contact-free fault location and imaging with on-chip terahertz time-domain reectometry,” Opt. Express 19, 12509–12514 (2011).

C. Duran, A. Maznev, G. Merklin, A. Mazurenko, and M. Gostein, ”Infrared reectometry for metrology of trenches in power devices,” in Proceedings of the Advanced Semiconductor Manufacturing Conference, 175–179 (IEEE/SEMI, Stresa, 2007).

C. Chen, D. Lee, T. Pollock, and W. Whitaker, ”Pulsed-terahertz reectometry for health monitoring of ceramic thermal barrier coatings,” Opt. Express 18, 3477–3486 (2010).

Y. Ghim, A. Suratkar, and A. Davies, ”Reectometry-based wavelength scanning interferometry for thickness measurements of very thin wafers,” Opt. Express 18, 6522–6529 (2010).

J. Fontaine, J. Diels, C. Wang, and H. Sallaba, ”Subpicosecond-timedomain reectometry,” Opt. Lett. 6, 405–407 (1981).

A. Liu, P. Wayner, and J. Plawsky, ”Image scanning ellipsometry for measuring non-uniformfilm thickness profiles,” Appl. Optics 33, 1223–1229 (1994).

K. Haines, and B. Hilderbrand, ”Contour generation by wavefront reconstruction,” Phys. Lett. 19, 10–11 (1965).

H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (Wiley, New Jersey, 2007).

U. Neuschaefer-Rube, W. Holzapfel, and F. Wirth, ”Surface measurement applying focusing reection ellipsometry: configurations and error treatment,” Measurement 33, 163–171 (2003).

W. Teh, D. Marx, D. Grant, and R. Dudley, ”Backside infrared interferometric patterned wafer thickness sensing for through-siliconvia (TSV) etch metrology,” IEEE T. Semiconduct. M. 23, 419–422 (2010).

M. Tsai, F. Chong, J. Lee, H. Wang, and C. Lee, ”Defect detection and property evaluation of indium tin oxide conducting glass using optical coherence tomography,” Opt. Express 19, 7559–7566 (2011).

P. De Groot, and L. Deck, ”Three-dimensional imaging by sub- Nyquist sampling of white-light interferograms,” Opt. Lett. 18, 1462–1464 (1993).

N. Tolk, M. Alles, R. Pasternak, X. Lu, R. Schrimpf, D. Fletwood, R. Dolan, and R. Stanley, ”Oxide interface studies using second harmonic generation,” Microelectron. Eng. 84, 2089–2092 (2007).

M. Alles, R. Pasternak, X. Lu, N. Tolk, R. Schrimpf, D. Fletwood, R. Dolan, and R. Stanley, ”Second harmonic generation for noninvasive metrology of silicon-oninsulator Wafers,” IEEE T. Semiconduct. M. 20, 107–113 (2007).

M. Peterson, P. Hayes, I. Martinez, L. Cass, J. Achtyl, E. Weiss, and F. Geiger, ”Second harmonic generation imaging with a kHz amplifier,” Opt. Mater. 1, 57–66 (2011).

X. Li, L. Zhao, Z. Fang, A. Asundi, and X. Yin, ”Surface measurement with Shack-Hartmann wavefront sensing technology,” Proc. SPIE 7155, 715515 (2008).

C. Xu, N. Himebaugh, P. Kollbaum, L. Thibos, and A. Bradley, ”Validation of a clinical Shack-Hartmann aberrometer,” Optometry Vision Sci. 80, 587–595 (2003).

L. Carvalho, ”Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye,” Inves. Ophth. Vis. Sci. 46, 1915–1926 (2005).

S. Furman, and A. Tikhonravov, Basic of Optics of Multilayer Systems (Editions Frontieres, Gif-sur-Yvette Cedex, 1992).

O. Heavens, ”Computation of periodic multilayers,” Opt. Acta 33, 1463–1465 (1986).

M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999).

O. Heavens, ”The propagation of lateral waves in absorbing media and thin films,” J. Mod. Opt. 21, 1–9 (1974).

B. Sernelius, Surface Modes in Physics (Wiley, Berlin, 2001).

L. Jolissain, ”Synthetic modeling of astronomical closed loop adaptive optics,” J. Europ. Opt. Soc. Public. 5, 10055 (2010).

V. Paeder, T. Scharf, H. Reffieux, P. Herzig, R. Voelkel, and K. Weible, ”Microlenses with annular amplitude and phase masks,” J. Europ. Opt. Soc. Public. 2, 07005 (2007).

H. Hirayama, K. Kaneda, H. Yamashita, Y. Yamaji, and Y. Monden, ”Visualization of optical phenomena caused by multilayer films with complex refractive indices,” in Proceedings of the 7th Pacific Conference on Computer Graphics and Applications, 504–509 (IEEE, Seoul, 2002).

W. Drexler, and J. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, Heidelberg, 2008).

W. Southwell, ”Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 1917–1983 (1980).

D. Neal, and J. Mansell, ”Application of Shack-Hartmann wavefront sensors to optical system calibration and alignment,” in Proceedings of the 2nd International Workshop on Adaptive Optics for Industry and Medicine 234–243 (World Scientific, Durham, 1999).

J. Busck, and H. Heseiberg, ”Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Optics 43, 4705–4710 (2004).

F. Abeles, ”Sur la propagation des ondeselectromagnetiquesdans les Milieus Stratifies,” Ann. Phys.-Paris 3, 504–520 (1948).

K. Ohta, and H. Ishida, ”Matrix formalism for calculation of electric field intensity of light in stratified multi-layered films,” Appl. Optics 29(13), 1952–1959 (1990).

P. Su, ”Polynomial fitting method for reducing wavefront slope data,” Arizona University. (2009).