Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Short-time Fourier transform laser Doppler holography

B. Samson, M. Atlan

Abstract


We report a demonstration of laser Doppler holography at a sustained acquisition rate of 250 Hz on a 1 Megapixel complementary metal-oxide-semiconductor (CMOS) sensor array and image display at 10 Hz frame rate. The holograms are optically acquired in off-axis configuration, with a frequency-shifted reference beam. Wide-field imaging of optical fluctuations in a 250 Hz frequency band is achieved by turning time-domain samplings to the dual domain via short-time temporal Fourier transformation. The measurement band can be positioned freely within the low radio-frequency (RF) spectrum by tuning the frequency of the reference beam in real-time. Video-rate image rendering is achieved by streamline image processing with commodity computer graphics hardware. This experimental scheme is validated by a non-contact vibrometry experiment.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13035]

Full Text: PDF

Citation Details


Cite this article

References


P. Castellini, M. Martarelli, and E. P. Tomasini, ”Laser Doppler Vibrometry: Development of advanced solutions answering to technology’s needs,” Mech. Syst. Signal Pr. 20, 1265–1285 (2006).

J. B. Allen, and L. R. Rabiner, ”A unified approach to short-time fourier analysis and synthesis,” Proc. IEEE 65, 1558–1564 (1977).

M. Leutenegger, E. Martin-Williams, P. Harbi, T. Thacher, W. Raffoul, M. André, A. Lopez, P. Lasser, and T. Lasser, ”Real-time full field laser doppler imaging,” Biomed. Opt. Express 2,1470–1477 (2011).

J. M. Kilpatrick, and V. Markov, ”Matrix laser vibrometer for transient modal imaging and rapid non-destructive testing,” Proc. SPIE7098, Eighth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, 709809 (2008).

Y. Fu, M. Guo, and P. B. Phua, ”Multipoint laser doppler vibrometry with single detector: principles, implementations, and signal analyses,” Appl. Optics 50, 1280–1288 (2011).

G. Pedrini, W. Osten, and M. E. Gusev, ”High-speed digital holographic interferometry for vibration measurement,” Appl. Optics 45, 3456–3462 (2006).

R. L. Powell, and K. A. Stetson, ”Interferometric vibration analysis by wavefront reconstruction,” J. Opt. Soc. Am. 55, 1593–1597 (1965).

P. Picart, J. Leval, D. Mounier, and S. Gougeon, ”Time-averaged digital holography,” Opt. Lett. 28, 1900–1902 (2003).

P. Hariharan, B. F. Oreb, and C. H. Freund, ”Stroboscopic holographic interferometry: measurements of vector components of a vibration,” Appl. Opt. 26, 3899–3903 (1987).

C. C. Aleksoff, ”Temporally modulated holography,” Appl. Optics 10,1329–1341 (1971).

F. Joud, F. Verpillat, F. Laloë, M. Atlan, J. Hare, and M. Gross, ”Fringe-free holographic measurements of large-amplitude vibrations,” Opt. Lett. 34, 3698–3700 (2009).

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, ”Realtime digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781 (2008).

L. Ahrenberg, A. J. Page, B. M. Hennelly, J. B. McDonald, and T. J. Naughton, ”Using commodity graphics hardware for real-time digital hologram view-reconstruction,” J. Disp. Technol. 5, 111–119 (2009).

B. Samson, F. Verpillat, M. Gross, and M. Atlan, ”Video-rate laser doppler vibrometry by heterodyne holography,” Opt. Lett. 36, 1449–1451 (2011).

N. Verrier, and M. Atlan, ”Off-axis digital hologram reconstruction: some practical considerations,” Appl. Optics 50, H136–H146 (2011).

E. Cuche, P. Marquet, and C. Depeursinge, ”Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Optics 39, 4070–4075 (2000).