Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

An alternative approach to the tomographic reconstruction of smooth refractive index distributions

E. de la Rosa-Miranda, L. R. Berriel-Valdos, E. Gonzalez-Ramirez, D. Alaniz-Lumbreras, T. Saucedo-Anaya, J. J. de la Rosa-Vargas, J. J. Villa-Hernandez, V. Torres-Argüelles, V. M. Castano

Abstract


Continuous, mathematically smooth Phase Objects with radial symmetry are reconstructed from cross sections of their refractive index distribution by a novel method, consisting of a linear combination of Gaussian basis functions, whose technical details are discussed. As an application example, this approach is used to get a fast and accurate estimation of the temperature distribution of an actual soldering tip.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13036]

Full Text: PDF

Citation Details


Cite this article

References


C. M. Vest, Holographic Interferometry (John Wiley & Sons, New York, 1979).

S. R. Deans, The Radon Transform, and Some of its Applications (First edition, Wiley, New York, 1983).

R. M. Lewitt, ”Reconstruction Algorithms: Transform Methods,” Proc. IEEE 71, 390–408 (1983).

H. J. Scudder, ”Introduction to Aided Tomography,” Proc. IEEE 66, 628–637 (1978).

A. K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, New Jersey, 1989).

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, ”Reconstruction of Abel-transformable images: The Gaussian basisset expansion Abel transform method,” Rev. Sci. Instrum. 73, 2634–2642 (2002).

K. J. Gasvik, Optical Metrology (Wiley, New York, 1987).

M. Takeda, H. Ina, and S. Kobayashi, ”Fourier-Transform Method of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry,” J. Opt. Soc. Am. A 72, 156–160 (1981).

K. M. Hanson, and G. W. Wecksung, ”Local Basis-Function Approach to Computed Tomography,” Appl. Opt. 24, 4028–4039 (1985).

Y. Censor, ”Finite Series-Expansion Reconstruction Methods,” Proc. IEEE 71, 409–419 (1983).

G. H. Golub, and C. F. Van Loan, Matrix Computations (Third edition, The John Hopkins University Press, Baltimore, 1996).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing Second edition, Cambridge University Press, New York, 1992).

C. G. Treviño-Palacios, M. D. Iturbe-Castillo, D. Sánchez-de-la-Llave, R. Ramos-García, and L. I. Olivos-Pérez, ”Nonlinear comon-path interferometer: An image processor,” Appl. Opt. 42, 5091–5095 (2003).