Journal of the European Optical Society - Rapid publications, Vol 8 (2013)
MAP entropy estimation: applications in robust image filtering
Abstract
© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13047]
Citation Details
Cite this article
References
N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, â€Speckle removal using a maximum-likelihood technique with isoline gray-level regularization,†J. Opt. Soc. Am. A 21(12), 2283–2291 (2004).
J. E. Besag, â€Spatial interaction and the statistical analysis of lattice systems,†J. Royal Stat. Soc. Ser. B B-36, 192–236 (1974).
J. E. Besag, â€On the statistical analysis of dirty picturesâ€, J. Royal Stat. Soc. Ser. B B-48, 259–302 (1986).
C. Bouman, and K. Sauer, â€A generalizaed Gaussian image model for edge-preserving MAP estimation,†IEEE T. Nucl. Sci. 99(4), 1144– 1152 (1992).
K. Champagnat, and J. Idier, â€A conection between half-quadratic criteria and EM algorithms,†IEEE Signal Proc. Let. 11(9), 709–712 (2004).
S. Geman, and C. Geman, â€Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images,†IEEE T. Pattern Anal. 6, 721–741 (1984).
K. Sauer, and C. Bouman, â€Bayesian estimation of transmission tomograms using segmentation based optimization,†IEEE T. Image Process. 2(3), 296–310 (1993).
J. I. De la Rosa, and G. Fleury, â€On the kernel selection for minimum-entropy estimation,†in Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 1205–12010 (IEEE, Anchorage, 2002).
J. I. De la Rosa, G. Fleury, and M.-E. Davoust, â€Minimum-entropy, pdf approximation and kernel selection for measurement estimation,†IEEE T. Instrum. Meas. 52(4), 1009–1020 (2003).
J. I. De la Rosa, â€Convergence of minimum-entropy robust estimators: Applications in DSP and instrumentation,†in Proceedings of the XIV International Conference on Electronics, Communications, and Computers - CONIELECOMP’04, 98–103 (IEEE, Veracruz, 2004).
P. Milanfar â€A Tour of Modern Image Filtering,†IEEE Signal Proc. Mag. 30(1), 106–128, Jan. (2013).
H. Takeda, S. Farsiu, and P. Milanfar, â€Kernel regression for image processing and reconstruction,†IEEE T. Image Process. 16(2), 349– 366, Feb. (2007).
Ö. Egecioglu, and A. Srinivasan, â€Efficent non-parametric density estimation on the sphere with applications in fluid mechanics,†SIAM J. Sci. Comput. 22(1), 152–176 (2000).
G. P. Terrell, â€The maximal smoothing principle in density estimation,†J. Am. Stat. Assoc. 85, 470–477 (1990).
G. P. Terrell, and D. W. Scott, â€Oversmoothed nonparametric density estimation,†J. Am. Stat. Assoc. 80, 209–214 (1985).
L. Pronzato, and E. Thierry, â€A minimum-entropy estimator for regression problems with unknown distribution of observation errors,†in textslMaxEnt 2000, Eds. A. Mohammad-Djafari, 169–180 (American Institute of Physics, College Park, 2000).
L. Pronzato, and E. Thierry, â€Entropy minimization of parameter estimator with unknown distribution of observation errors,†in Proceedings of the IEEE International Conference in Acoustics, Speech and Signal Processing, 3993–3996 (IEEE, Salt Lake City, 2001).
E. Masry, â€Probability density estimation from sampled data,†IEEE T. Inform. Theory IT-29(5), 697–709 (1983).
L. Devroye, â€A note on the usefulness of superkernels in density estimation,†Ann. Stat. 20, 2037–2056 (1992).
L. Devroye, â€The double kernel method in density estimation,†Ann. I. H. Poincare 25, 533–580 (1989).
L. Devroye, and A. KrzyzaË™ k, â€On the Hilbert kernel density estimate,†Stat. Probabil. Lett. 44, 299–308 (1999).
L. Devroye, â€Universal smoothing factor selection in density estimation: Theory and practice,†Test 6, 223–320 (1997).
A. Berlinet, and L. Devroye, â€A comparison of kernel density estimates,†Publications de l’Intitut de Statistique de l’Université de Paris 38(3), 3–59 (1994).
C. M. Loader, â€Bandwidth selection: classical or plug-in?,†Ann. Stat. 27(3), 415–438 (1999).
E. Wolsztynski, E. Thierry, and L. Pronzato, â€Minimum entropy estimation in semi parametric models,†Signal Process. 85, 937–949 (2005).