Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Self-tuning laser speckle contrast analysis based on multiple exposure times with enhanced temporal resolution

D. Zölei, T. Smausz, B. Hopp, F. Bari

Abstract


Laser Speckle Contrast Analysis (LASCA) was introduced in 1981. Since then, several enhancements were applied to it. Nowadays, thetechnique can provide relatively high accuracy as well as high temporal and spatial resolution during the examination of ocular or cerebraltissues. However, in the case of skin, the results are highly affected by the intensive scattering on the skin surface, as the scattering onthe non-moving parts of the sample lead to the detrimental decrease of the accuracy. We present a LASCA method based on the use ofmultiple exposure times, combined with the switching-mode control of the light intensity and a special sampling technique to achieve nearto real-time measurement of the skin perfusion. The system based on our method is able to automatically handle the destructive effect ofthe skin surface and re-tune itself according to the changes of the sample, while it provides full-field perfusion maps with high accuracy,without the need of any precalibrations.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13053]

Full Text: PDF

Citation Details


Cite this article

References


A. F. Fercher, and J. D. Briers, ”Flow Visualization by Means of Single-exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, ”Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).

M. Nagahara, Y. Tamaki, M. Araie, and H. Fujii, ”Real-time blood velocity measurements in human retinal vein using the laser speckle phenomenon,” Jpn. J. Ophthalmol. 43, 186–195 (1999).

J. D. Briers, and S. Webster, ”Quasi Real-time Digital Version of Single-exposure Speckle Photography for Full-field Monitoring of Velocity or Flow Fields,” Opt. Commun. 116, 36–42 (1995).

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, ”Statistics of Local Speckle Contrast,” J. Opt. Soc. Am. A 25, 9–15 (2008).

L. F. Rojas, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, ”Depolarization of Backscattered Linearly Polarized Light,” J. Opt. Soc. Am. A 21, 1799–1804 (2004).

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, ”Speckle-visibility Spectroscopy: a Tool to Study Timevarying Dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang and A. K. Dunn, ”Robust Flow Measurement with Multi-exposure Speckle Imaging,” Opt. Express 16, 1975–1989 (2008).

P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, ”Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13904–13917 (2009).

T. Smausz, D. Zölei, and B. Hopp, ”Real Correlation Time Measurement in Laser Speckle Contrast Analysis Using Wide Exposure Time Range Images,” Appl. Opt. 48, 1425–1429 (2009).

D. Zölei, T. Smausz, B. Hopp, and F. Bari, ”Multiple Exposure Time Based Laser Speckle Contrast Analysis: Demonstration of Applicability in Skin Perfusion Measurements,” P&O 1, 28–32 (2012).

F. Domoki, D. Zölei, O. Oláh, V. T˝oth-Sz˝uki, B. Hopp, and T. Smausz, ”Evaluation of Laser-speckle Contrast Image Analysis Techniques in the Cortical Microcirculation of Piglets,” Microvasc. Res. 83, 311–317 (2012).

A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, ”Laser Speckle Imaging with an Active Noise Reduction Scheme,” Opt. Express 13, 9782–9787 (2005).

T. Smausz, D. Zölei, and B. Hopp, ”Laser power modulation with wavelength stabilization in multiple exposure laser speckle contrast analysis,” Proc. SPIE 8413, 84131J (2012).

N. C. Abbot, W. R. Ferrell, J. C. Lockhart, J. G. Lowe, ”Laser Doppler perfusion imaging of skin blood flow using red and near-infrared sources,” J. Invest. Dermatol. 107, 882–886 (1996).

O. B. Thompson, and M. K. Andrews, ”Tissue Perfusion Measurements, Multiple-exposure Laser Speckle Analysis Generates Laser Doppler-like Spectra,” J. Biomed. Opt. 15, 027015 (2010).

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, ”A Comparison of Two Laser-based Methods for Determination of Burn Scar Perfusion: Laser Doppler Versus Laser Speckle Imaging,” Burns 31, 744–752 (2005).

M. Roustit, C. Millet, S. Blaise, B. Dufournet, and J. L. Cracowski, ”Excellent Reproducibility of Laser Speckle Contrast Imaging to Assess Skin Microvascular Reactivity,” Microvasc. Res. 80, 505–511 (2010).

Z. Luo, Z. Yuan, Y. Pan, and C. Du, ”Simultaneous Imaging of Cortical Hemodynamics and Blood Oxygenation Change During Cerebral Ischemia Using Dual-wavelength Laser Speckle Contrast Imaging,” Opt. Lett. 34, 1480–1482 (2009).